A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In Vivo Comparison of Multiline Transmission and Diverging Wave Imaging for High-Frame-Rate Speckle-Tracking Echocardiography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-frame-rate (HFR) speckle-tracking echocardiography (STE) assesses myocardial function by quantifying motion and deformation at high temporal resolution. Among the proposed HFR techniques, multiline transmission (MLT) and diverging wave (DW) imaging have been used in this context both being characterized by specific advantages and disadvantages. Therefore, in this article, we directly contrast both approaches in an in vivo setting while operating at the same frame rate (FR). First, images were recorded at baseline (resting condition) from healthy volunteers and patients. Next, additional acquisitions during stress echocardiography were performed on volunteers. Each scan was contoured and processed by a previously proposed 2-D HFR STE algorithm based on cross correlation. Then, strain curves and their end-systolic (ES) values were extracted for all myocardial segments for further statistical analysis. The baseline acquisitions did not reveal differences in estimated strain between the acquisition modes ( ); myocardial segments ( ); or an interaction between imaging mode and depth ( ). Similarly, during stress testing, no difference ( p = 0.7 ) was observed for the two scan sequences, stress levels or an interaction sequence-stress level ( p = 0.94 ). Overall, our findings show that MLT and DW compoundings give comparable HFR STE strain values and that the choice for using one method or the other may thus rather be based on other factors, for example, system requirements or computational cost.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2020.3037043DOI Listing

Publication Analysis

Top Keywords

multiline transmission
8
diverging wave
8
wave imaging
8
speckle-tracking echocardiography
8
hfr ste
8
myocardial segments
8
vivo comparison
4
comparison multiline
4
transmission diverging
4
imaging high-frame-rate
4

Similar Publications