The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota.

Environ Microbiol

Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amphiphilic siderophores, including amphibactins, are the most abundant siderophores in oceans. Genes putatively encoding the amphibactin system were proposed in some bacteria and homologues of these genes are particularly abundant in multiple bacterial lineages inhabitant of low-iron seawater. However, since no defective mutant strains in any of these genes were studied to date, their role in amphibactin synthesis or uptake was not demonstrated. In this work, an in silico analysis of the genome of the mollusc pathogen Vibrio neptunius leads us to identify a gene cluster (denoted absABDEF) that is predicted to encode an amphibactin-like siderophore and several mutant strains unable to synthesize or use siderophores were constructed. The results showed that genes absABDEF are required for amphibactin synthesis. A comparative chemical analysis of V. neptunius wild type and biosynthesis mutants allowed us to identify a mixture of nine amphibactin forms produced by this bacterium. In addition, the gene abtA is predicted to encode the ferri-amphibactin outer membrane transporter. The prevalence of the amphibactin system in bivalve hemolymph microbiota was also studied. We found that the amphibactin system is widespread in hemolymph microbiota including both commensal and pathogenic bacterial species. Thus, its contribution to bacterial fitness must be more related to environmental persistence than to pathogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15312DOI Listing

Publication Analysis

Top Keywords

amphibactin system
12
pathogen vibrio
8
vibrio neptunius
8
mutant strains
8
amphibactin synthesis
8
predicted encode
8
hemolymph microbiota
8
amphibactin
7
marine bivalve
4
bivalve molluscs
4

Similar Publications

Produces Piscibactin and Amphibactin and Both Siderophores Contribute Significantly to Virulence for Clams.

Front Cell Infect Microbiol

November 2021

Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

is an inhabitant of mollusc microbiota and an opportunistic pathogen causing disease outbreaks in marine bivalve mollusc species including oysters and clams. Virulence of mollusc pathogenic vibrios is mainly associated with the production of extracellular products. However, siderophore production is a common feature in pathogenic marine bacteria but its role in fitness and virulence of mollusc pathogens remains unknown.

View Article and Find Full Text PDF

The marine bivalve molluscs pathogen Vibrio neptunius produces the siderophore amphibactin, which is widespread in molluscs microbiota.

Environ Microbiol

December 2020

Departamento de Microbiología y Parasitología, Instituto de Acuicultura y Facultad de Biología-CIBUS, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela, Spain.

Amphiphilic siderophores, including amphibactins, are the most abundant siderophores in oceans. Genes putatively encoding the amphibactin system were proposed in some bacteria and homologues of these genes are particularly abundant in multiple bacterial lineages inhabitant of low-iron seawater. However, since no defective mutant strains in any of these genes were studied to date, their role in amphibactin synthesis or uptake was not demonstrated.

View Article and Find Full Text PDF

Obligate marine hydrocarbonoclastic bacteria possess genetic and physiological features to use hydrocarbons as sole source of carbon and to compete for the uptake of nutrients in usually nutrient-depleted marine habitats. In the present work we have studied the siderophore-based iron uptake systems in Alcanivorax borkumensis SK2 and their functioning during biodegradation of an aliphatic hydrocarbon, tetradecane, under iron limitation conditions. The antiSMASH analysis of SK2 genome revealed the presence of two different putative operons of siderophore synthetases.

View Article and Find Full Text PDF