A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluid samples using graphite pencil electrode modified with palladium nanoparticles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study reports the development of graphite pencil electrode modified with palladium nanoparticles (PdNPs) and its application as an electrochemical sensor for the simultaneous detection of direct yellow 50, tryptophan, carbendazim and caffeine in river water and synthetic urine samples. The combination involving the conductive surface of the graphite pencil electrode (GPE) and the enlargement of the surface area caused by the use of palladium nanoparticles (PdNPs) led to the improvement of the analytical performance of the proposed device. The surface of the GPE-PdNPs was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The charge transfer kinetics of the electrode was evaluated based on the electrochemical analysis of the potassium ferricyanide redox probe. Using square wave voltammetry (SWV), well-defined and fully resolved anodic peaks were detected for the analytes, with peak-to-peak potential separation not less than 200 mV. Under optimised conditions, the following linear range concentrations were obtained: 0.99-9.9 μmol L for direct yellow 50; 1.2-12 μmol L for tryptophan; 0.20-1.6 μmol L for carbendazim; and 25-190 μmol L for caffeine. The sensor showed good sensitivity, repeatability, and stability. The device was successfully applied for the determination of analytes in urine and river water samples, where recovery rates close to 100% were obtained. Due to its low cost and reusability by simple polishing, the sensor has strong potential to be used as an electrochemical sensor for the determination of different analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121539DOI Listing

Publication Analysis

Top Keywords

direct yellow
12
graphite pencil
12
pencil electrode
12
palladium nanoparticles
12
yellow tryptophan
8
tryptophan carbendazim
8
carbendazim caffeine
8
electrode modified
8
modified palladium
8
nanoparticles pdnps
8

Similar Publications