98%
921
2 minutes
20
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: , , and . To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591705 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.579156 | DOI Listing |
Reprod Sci
September 2025
Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Background And Objective: As space exploration advances, the effects of the microgravity environment on testicular injury and spermatogenic function in astronauts have attracted widespread attention, but the underlying mechanisms remain unclear.
Methods: In this study, testicular morphometry and Johnsen score were used to evaluate the degree of testicular injury. Then the upstream transcription factors of MeCP2 were verified using the dual-luciferase reporter assay.
Bone Rep
September 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Spaceflight (SF) and disuse result in decreases in bone and skeletal muscle volume that increase fracture risk. Hindlimb unloading (HLU) has been widely used to model the effects of microgravity. However, the effects of SF and HLU on bone and skeletal muscle have not been directly compared during long-duration SF.
View Article and Find Full Text PDFFASEB J
September 2025
UR SIMPA, Stress Immunity Pathogens Laboratory, Faculty of Medicine, University of Lorraine, Vandœuvre-lès-Nancy, France.
With future manned space projects involving missions of unprecedented duration, multisystem deconditioning induced by spaceflight could seriously affect the well-being and health of astronauts. Safe and easily determined in-flight biomarkers are therefore needed to monitor health status. In this study, we simulated space deconditioning with a 5-day dry immersion (DI) of 18 healthy women and 19 healthy men and evaluated the effects of this protocol on three biomarkers: the neutrophil-to-lymphocyte ratio (NLR), the granulocyte-to-lymphocyte ratio (GLR) and the platelet-to-lymphocyte ratio (PLR).
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
NASA Space Radiation Laboratory, Collider-Accelerator Dept., Brookhaven National Laboratory, Upton, NY, USA.
Purpose: Human space exploration is on an upward trajectory with new space stations being manufactured for scientific experiments, industrial development, and space tourism. These spacecraft in LEO and MEO will take advantage of Earth's magnetic field for radiation protection. Astronauts on the International Space Station receive an average radiation dose of 25 µSV/hour; around 250 times greater than the average sea level dose rate.
View Article and Find Full Text PDFJ Funct Biomater
July 2025
Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research.
View Article and Find Full Text PDF