98%
921
2 minutes
20
Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells-in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type -glycans and high-mannose type -glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693892 | PMC |
http://dx.doi.org/10.3390/md18110543 | DOI Listing |
Drug Discov Today
March 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea. Electronic address:
Fucoidan, a polysaccharide from seaweed, holds promise as a drug delivery system and immune modulator; however, its exact mechanism of action remains unclear. As various carbohydrates play key roles in immune responses by binding to carbohydrate-binding proteins like lectins, fucoidan is hypothesized to interact with immune receptors, potentially driving its anticancer activities. However, structural variability, extraction-induced heterogeneity, and weak binding affinities pose challenges to research.
View Article and Find Full Text PDFMar Drugs
December 2024
Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil.
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
School of Food Science and Engineering, Hainan University, Haikou, P.R. China.
Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
School of Pharmacy, Yantai University, Yantai 264005, China. Electronic address:
Lectins are proteins that bind specifically and reversibly to carbohydrates, and some of them have significant anti-tumor activities. Compared to those of lectins from land plants, there are far fewer studies on algal lectins, despite of the high biodiversity of algae. However, canonical strategies based on chromatographic feature-oriented screening cannot satisfy the requirement for algal lectin discovery.
View Article and Find Full Text PDFCurr HIV Res
January 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins.
View Article and Find Full Text PDF