Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.3035191DOI Listing

Publication Analysis

Top Keywords

ecg signals
8
types arrhythmias
8
wave detection
8
ectopic beats
8
arrhythmia classification
8
efficient ecg
4
classification
4
ecg classification
4
classification system
4
system resource-saving
4

Similar Publications

Adult congenital heart disease (ACHD) constitutes a heterogeneous and expanding patient cohort with distinctive diagnostic and management challenges. Conventional detection methods are ineffective at reflecting lesion heterogeneity and the variability in risk profiles. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL) models, has revolutionized the potential for improving diagnosis, risk stratification, and personalized care across the ACHD spectrum.

View Article and Find Full Text PDF

Exercise influences visual processing and is accompanied by neural and physiological changes in the body. Yet, the underlying mechanisms by which neural and physiological responses to exercise impact ensuing perception remain poorly understood. In particular, the effects of exercise-induced cardiac changes on visual perception and electrophysiological activity are unclear.

View Article and Find Full Text PDF

Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Introduction: In recent years, Deep Learning (DL) architectures such as Convolutional Neural Network (CNN) and its variants have been shown to be effective in the diagnosis of cardiovascular disease from ElectroCardioGram (ECG) signals. In the case of ECG as a one-dimensional signal, 1-D CNNs are deployed, whereas in the case of a 2D-represented ECG signal, i.e.

View Article and Find Full Text PDF