Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Coronary heart disease (CHD) is a serious disease that endangers human health and life. In recent years, the morbidity and mortality of CHD are increasing significantly. Because of the particularity and complexity of medical image, it is challenging to segment coronary artery accurately and efficiently. This paper proposes a novel global feature embedded network for better coronary arteries segmentation in 3D coronary computed tomography angiography (CTA) data. The global feature combines multi-level layers from various stages of the network, which contains semantic information and detailed features, aiming to accurately segment target with precise boundary. In addition, we integrate a group of improved noisy activating functions with parameters into our network to eliminate the impact of noise in CTA data. And we improve the learning active contour model, which obtains a refined segmentation result with smooth boundary based on the high-quality score map produced by the networks. The experimental results show that the proposed framework achieved the state-of-the-art performance intuitively and quantitively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2020.101799 | DOI Listing |