A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate.

Sci Total Environ

School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The factors controlling per- and polyfluoroalkyl substances (PFAS) environmental fate remains the subject of considerable debate and study. As surfactants, PFAS readily partition to interfaces, a property that controls their transport and fate. A group contribution model is developed to predict the extent to which PFAS partitions to the air-water interface. Langmuir adsorption and Szyszkowski equation parameters were fitted to literature air-water surface tension data for a range of PFAS and conventional hydrocarbon surfactants. This approach enabled the prediction of the impact of the hydrophilic head group, and other molecular components, on PFAS interfacial partitioning in instances when PFAS data are unavailable but analogous hydrocarbon surfactant data are available. The model was extended to predict a range of parameters (i.e., solubility, critical micelle concentration (CMC), K, K and K) that are used to predict PFAS environmental fate, including long-range PFAS transport and in multimedia models. Model predictions were consistent with laboratory and field derived parameters reported in the literature. Additionally, the proposed model can predict the impact of pH and speciation on the extent of PFAS interfacial partitioning, a potentially important feature for understanding the behaviors of some ionizable PFAS, such as fluorinated carboxylic acids. The proposed model provides a conceptually straightforward method to predict a wide range of environmental fate parameters for a wide range of PFAS. As such, the model is a powerful tool that can be used to determine parameters needed to predict PFAS environmental fate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142882DOI Listing

Publication Analysis

Top Keywords

environmental fate
20
pfas
13
pfas environmental
12
extent pfas
8
range pfas
8
pfas interfacial
8
interfacial partitioning
8
predict pfas
8
proposed model
8
wide range
8

Similar Publications

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF

The coexistence of pharmaceuticals and microorganisms in source separated urine poses a risk for the development of antimicrobial resistance (AMR), especially when urine-based fertilizers are applied to soils. While prior studies have investigated pathogen inactivation in source-separated wastewater matrices, few have evaluated the simultaneous fate of antibiotic-resistant bacteria (ARBs) and their corresponding resistance genes (ARGs) in real urine matrices, particularly under alkaline conditions. Here, we studied the inactivation of β-lactamase-producing and vancomycin-resistant and the degradation of their respective ARGs ( and A) in alkalized, unhydrolyzed urine (pH 10.

View Article and Find Full Text PDF

Influence of microplastic colour on photodegradation of sorbed contaminants.

Environ Sci Process Impacts

September 2025

Department of Chemistry & Chemical Biology, McMaster University, Hamilton, L8S 4M1, Canada.

Microplastics are ubiquitous in the environment, accumulate hydrophobic organic contaminants, and suppress the photodegradative loss of these contaminants. Thus, they have the potential to act as vectors for contaminant uptake by organisms and transport to remote regions. Our current understanding of microplastic-sorbed contaminant photodegradation is drawn from experiments with unpigmented microplastics, but the interaction of pigments with light may alter the loss and corresponding persistence of sorbed contaminants.

View Article and Find Full Text PDF

Transformation of chloroxylenol in real sewer sediments: Key adsorption sites and CYP450-catalyzed biodegradation.

J Hazard Mater

September 2025

State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

The widespread discharge of emerging micropollutants (EMs) into sewer systems has raised serious environmental concerns throughout the world. However, the transformation mechanisms underlying the accumulation of EMs in sewer sediments remain largely unexplored. This study investigated the transformation fate and mechanisms of chloroxylenol (PCMX) in sewer sediments.

View Article and Find Full Text PDF

Short water transit times determine the fate of veterinary pharmaceuticals in lowland catchments.

J Contam Hydrol

August 2025

Faculty of Geoscience and the Environment, University of Lausanne, Lausanne, Switzerland; Laboratory of Ecohydrology ENAC/IIE/ECHO, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Livestock animals are commonly treated with veterinary pharmaceuticals (VPs), and their residues often enter the environment through manure applied to soil. A fraction of these residues may be further transported to surface waters through intricate transport mechanisms. Here, we examine the temporal dynamics of VPs in lowland surface waters of an agricultural catchment in the Netherlands, utilizing information on VPs concentrations in manure (2015-2020) and surface water measurements collected in 2020.

View Article and Find Full Text PDF