Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early-phase studies quantifying the QTc prolongation potential for a new drug often use linear concentration-QTc (C-QTc) models, assuming no delay between plasma concentrations and QTc changes. However, that assumption is not always correct. The term "hysteresis" has been utilized to describe a time lag present between a measurable concentration and a measurable effect. To detect and quantify hysteresis and its impact on study interpretation, studies with hysteresis of 0.25-4 h were simulated with different doses, half-lives, and sampling schedules in a crossover design. Hysteresis was quantified using a novel method termed exposure-normalized GRI (enGRI), a proposed modification of the Glomb-Ring Index (GRI), to account for delay and magnitude of QTc effects. With realistic sampling, the rate of false negative studies (FN) increased proportionally to the delay, even for delays shorter than 1 h. Using an enGRI threshold (γ) of 2 ms resulted in FN with undetected delay and FN without hysteresis at approximately the same rate. For γ = 2 ms, the specificity of enGRI was > 90% throughout the investigated scenarios. We therefore propose the incorporation of enGRI when interpreting results from C-QTc analysis with the intent of characterizing QTc effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10928-020-09725-wDOI Listing

Publication Analysis

Top Keywords

qtc effects
8
hysteresis
5
qtc
5
detection impact
4
impact hysteresis
4
hysteresis evaluating
4
evaluating drug's
4
drug's qtc
4
qtc concentration-qtc
4
concentration-qtc analysis
4

Similar Publications

Relationships of Circulating Plasma Metabolites With the QT Interval in a Large Population Cohort.

Circ Genom Precis Med

September 2025

Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, London, United Kingdom (W.J.Y., M.M.S., J.R., S.v.D., H.R.W., A.T., P.B.M.).

Background: There is a higher prevalence of heart rate corrected QT (QTc) prolongation in patients with diabetes and metabolic syndrome. QT interval genome-wide association studies have identified candidate genes for cardiac energy metabolism, and experimental studies suggest that polyunsaturated fatty acids have direct effects on ion channel function. Despite this, there has been limited study of metabolite concentration relationships with QT intervals.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

The QT interval is a key indicator in assessing arrhythmia risk, evaluating drug safety, and supporting clinical diagnosis in cardiology. The QT interval is significantly influenced by heart rate so it must be accurately corrected to ensure reliable clinical interpretation. Conventional correction formulas, such as Bazett's formula, are widely utilized but often criticized for inaccuracies, either under- or overcorrecting QT intervals in different physiological conditions.

View Article and Find Full Text PDF

Arsenic trioxide (ATO) in combination with all-trans retinoic acid (ATRA) has been shown to be effective in both adult and pediatric patients with acute promyelocytic leukemia (APL). Addition of ATO to conventional chemotherapy could lead to a reduction in the doses of cytotoxic agents, but the long-term safety of ATO is not fully understood, especially in children. The Japan Children's Cancer Group conducted a risk-stratified prospective study to investigate safety and efficacy of ATO in children with newly diagnosed APL by replacing all three intensification phases with ATO.

View Article and Find Full Text PDF

Objective: This study investigates the link between circulating proteins and rate-corrected QT (QTc) interval in patients with heart failure with reduced ejection fraction (HFrEF) and their association with cardiovascular outcomes.

Methods And Results: We analyzed 197 HFrEF patients from the prospective Serial Biomarker Measurements and New Echocardiographic Techniques in Chronic Heart Failure Patients Result in Tailored Prediction of Prognosis (Bio-SHiFT) study, all in sinus rhythm at baseline. Baseline QTc intervals were calculated and corrected for broad QRS complexes (>120 ms) using Bogossian's formula.

View Article and Find Full Text PDF