A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of hyperaldosteronism subtypes when adrenal vein sampling is unilaterally successful. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Adrenal venous sampling (AVS) is the gold standard to discriminate patients with unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and in cases of unsuccessful cannulation of adrenal veins, the results may not always be interpreted. The aim of our study was to develop diagnostic models to distinguish UPA from BPA, in cases of unilateral successful AVS and the presence of contralateral suppression of aldosterone secretion.

Design: Retrospective evaluation of 158 patients referred to a tertiary hypertension unit who underwent AVS. We randomly assigned 110 patients to a training cohort and 48 patients to a validation cohort to develop and test the diagnostic models.

Methods: Supervised machine learning algorithms and regression models were used to develop and validate two prediction models and a simple 19-point score system to stratify patients according to their subtype diagnosis.

Results: Aldosterone levels at screening and after confirmatory testing, lowest potassium, ipsilateral and contralateral imaging findings at CT scanning, and contralateral ratio at AVS, were associated with a diagnosis of UPA and were included in the diagnostic models. Machine learning algorithms correctly classified the majority of patients both at training and validation (accuracy: 82.9-95.7%). The score system displayed a sensitivity/specificity of 95.2/96.9%, with an AUC of 0.971. A flow-chart integrating our score correctly managed all patients except 3 (98.1% accuracy), avoiding the potential repetition of 77.2% of AVS procedures.

Conclusions: Our score could be integrated in clinical practice and guide surgical decision-making in patients with unilateral successful AVS and contralateral suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1530/EJE-20-0656DOI Listing

Publication Analysis

Top Keywords

patients
8
patients unilateral
8
diagnostic models
8
unilateral successful
8
successful avs
8
contralateral suppression
8
patients training
8
machine learning
8
learning algorithms
8
score system
8

Similar Publications