An Adaptable Cryptosystem Enabled by Synergies of Luminogens with Aggregation-Induced-Emission Character.

Adv Mater

The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The strong emission in the solid state and the feasibility of introducing stimuli responsiveness make aggregation-induced-emission luminogens promising for optical information encryption. Yet, the vast majority of previous reports rely on subtle changes in the molecular conformation or intermolecular interactions, limiting the robustness, multiplicity, capacity, and security of the resulting cryptosystems. Herein, a versatile cryptographic system is presented based on three interconnected and orthogonal covalent transformations concerning a tetraphenylethylene-maleimide conjugate. The cryptosystem is adapted into four configurations with different functionalities by organizing the reactions and molecules in different ways. These variants either balance the accessibility and security of the encrypted information or improve the security and density in data encryption. Significantly, they allow variable decryption from a single encryption and reconstruction of the chemical nature hidden in the fluorescent pattern can only be accessed through given algorithms. These results highlight the importance of multi-component synergies in advancing information encryption systems, which is enabled by the robustness and diversity stemming from the covalent nature of these transformations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202004616DOI Listing

Publication Analysis

Top Keywords

adaptable cryptosystem
4
cryptosystem enabled
4
enabled synergies
4
synergies luminogens
4
luminogens aggregation-induced-emission
4
aggregation-induced-emission character
4
character strong
4
strong emission
4
emission solid
4
solid state
4

Similar Publications

Proxy re-signature enables transitive authentication of digital identities across different domains and has significant application value in areas such as digital rights management, cross-domain certificate validation, and distributed system access control. However, most existing proxy re-signature schemes, which are predominantly based on traditional public-key cryptosystems, face security vulnerabilities and certificate management bottlenecks. While identity-based schemes alleviate some issues, they introduce key escrow concerns.

View Article and Find Full Text PDF

To ensure confidentiality and integrity in the era of quantum computing, most post-quantum cryptographic schemes are designed to achieve either encryption or digital signature functionalities separately. Although a few signcryption schemes exist that combine these operations into a single, more efficient process, they typically rely on complex vector, matrix, or polynomial-based structures. In this work, a novel post-quantum public-key encryption and signature (PQES) scheme based entirely on scalar integer operations is presented.

View Article and Find Full Text PDF

Optical chaos offers a promising approach to establishing secure communication at high data rates in a shared physical channel, like optical fibers and free space. However, the required synchronization between the transmitter and the receiver can be severely impaired by the nonidealities of the optical link. In particular, free-space optical communications are affected by atmospheric turbulence, which causes beam scintillation and results in time-varying fading of the optical intensity at the receiver side.

View Article and Find Full Text PDF

The ever-growing threats in cybersecurity growing with the rapid development of quantum computing, necessitates the development of robust and quantum-resistant cryptographic systems. This paper introduces a novel cryptosystem, Public Key Cryptosystem based on Systematic Polar Encoding (PKC-SPE), based on the combination of systematic polar encoding and public-key cryptographic principles. The Systematic Polar Encoding (SPE), derived from the well-established field of polar codes, serves as the foundation for this proposed cryptographic scheme.

View Article and Find Full Text PDF

Energy utilization rates have been largely improved thanks to the wide application of smart grids, thereby realizing the reliable, economic and efficient operation of the grids. However, such an application is also accompanied by many security issues. In response to the many problems within existing security schemes, such as not supporting the communication between heterogeneous cryptosystems, low security levels and a low data retrieval efficiency, a heterogeneous signcryption (HSC) scheme that supports a trusted multi-ciphertext equality test (MET) is proposed.

View Article and Find Full Text PDF