A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Molecular dynamic simulation of performance of modified BAMO/AMMO copolymers and their effects on mechanical properties of energetic materials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Based on molecular dynamic method, densities, mechanical behavior and mechanical performance of P(BAMO/ AMMO) (Polymer 1) and two novel modified P(BAMO/AMMO) (Polymer 2: containing amino group, Polymer 3: containing nitro group), and their effects on mechanical properties of four energetic materials are investigated, the main results are as follow: Polymer 2 (1.235 g/cm, 240 ± 5 K) and Polymer 3: 1.281 g/cm, 181 ± 3 K) possess higher densities and lower glass transition temperatures than Polymer 1 (1.229 g/cm, 247 ± 4 K). The modification makes Polymer 1 difficult to expand, improves its mechanical properties, but has few effect on its diffusion coefficient at same temperature and state. In addition, three binders are compatible with TNT, HMX and CL-20, and may react with DNTF. All polymers particularly improve rigidity of four energetic materials, and enhance their ductility except Polymer 2 on TNT. The ability of Polymer 2 and Polymer 3 improving rigidity (except Polymer 3 on HMX) and ductility of TNT and HMX is inferior to that of Polymer 1, but it is contrary for CL-20 and DNTF (except Polymer 2 on rigidity of DNTF). Moreover, Polymer 2-based interfacial crystals exhibit higher rigidity than Polymer 3-based interfacial crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584640PMC
http://dx.doi.org/10.1038/s41598-020-75146-xDOI Listing

Publication Analysis

Top Keywords

polymer
15
mechanical properties
12
energetic materials
12
molecular dynamic
8
effects mechanical
8
properties energetic
8
tnt hmx
8
rigidity polymer
8
dntf polymer
8
interfacial crystals
8

Similar Publications