Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite growing evidence for the characteristic signs of Alzheimer's disease (AD) in the neurosensory retina, our understanding of retina-brain relationships, especially at advanced disease stages and in response to therapy, is lacking. In transgenic models of AD (APP/PS1; ADtg mice), glatiramer acetate (GA) immunomodulation alleviates disease progression in pre- and early-symptomatic disease stages. Here, we explored the link between retinal and cerebral AD-related biomarkers, including response to GA immunization, in cohorts of old, late-stage ADtg mice. This aged model is considered more clinically relevant to the age-dependent disease. Levels of synaptotoxic amyloid β-protein (Aβ), angiopathic Aβ, non-amyloidogenic Aβ, and Aβ/Aβ ratios tightly correlated between paired retinas derived from oculus sinister (OS) and oculus dexter (OD) eyes, and between left and right posterior brain hemispheres. We identified lateralization of Aβ burden, with one-side dominance within paired retinal and brain tissues. Importantly, OS and OD retinal Aβ levels correlated with their cerebral counterparts, with stronger contralateral correlations and following GA immunization. Moreover, immunomodulation in old ADtg mice brought about reductions in cerebral vascular and parenchymal Aβ deposits, especially of large, dense-core plaques, and alleviation of microgliosis and astrocytosis. Immunization further enhanced cerebral recruitment of peripheral myeloid cells and synaptic preservation. Mass spectrometry analysis identified new parallels in retino-cerebral AD-related pathology and response to GA immunization, including restoration of homeostatic glutamine synthetase expression. Overall, our results illustrate the viability of immunomodulation-guided CNS repair in old AD model mice, while shedding light onto similar retino-cerebral responses to intervention, providing incentives to explore retinal AD biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681044PMC
http://dx.doi.org/10.1111/acel.13246DOI Listing

Publication Analysis

Top Keywords

adtg mice
12
retinal brain
8
pathology response
8
alzheimer's disease
8
disease stages
8
response immunization
8
disease
6
6
parallels retinal
4
brain pathology
4

Similar Publications

The main challenge in the "post-GWAS" era is to determine the functional meaning of genetic variants and their contribution to disease pathogenesis. Development of suitable mouse models is critical because disease susceptibility is triggered by complex interactions between genetic, epigenetic, and environmental factors that cannot be modeled by in vitro models. Thyroglobulin (TG) is a key gene for autoimmune thyroid disease (AITD) and several single nucleotide polymorphisms (SNPs) in the TG coding region have been associated with AITD.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors α (PPARα) are members of the nuclear receptors family and a very potent transcription factor engaged in the regulation of lipid and energy metabolism. Recent data suggest that PPARα could play an important role in the pathomechanism of Alzheimer's disease (AD) and other neuropsychiatric disorders. This study focused on the effect of a synthetic ligand of PPARα, GW7647 on the transcription of genes encoding proteins of mitochondria biogenesis and dynamics in the brain of AD mice.

View Article and Find Full Text PDF

The hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models.

View Article and Find Full Text PDF

Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer's disease.

Acta Neuropathol Commun

November 2020

Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.

Extensive effort has been made studying retinal pathology in Alzheimer's disease (AD) to improve early noninvasive diagnosis and treatment. Particularly relevant are vascular changes, which appear prominent in early brain pathogenesis and could predict cognitive decline. Recently, we identified platelet-derived growth factor receptor beta (PDGFRβ) deficiency and pericyte loss associated with vascular Aβ deposition in the neurosensory retina of mild cognitively impaired (MCI) and AD patients.

View Article and Find Full Text PDF

Despite growing evidence for the characteristic signs of Alzheimer's disease (AD) in the neurosensory retina, our understanding of retina-brain relationships, especially at advanced disease stages and in response to therapy, is lacking. In transgenic models of AD (APP/PS1; ADtg mice), glatiramer acetate (GA) immunomodulation alleviates disease progression in pre- and early-symptomatic disease stages. Here, we explored the link between retinal and cerebral AD-related biomarkers, including response to GA immunization, in cohorts of old, late-stage ADtg mice.

View Article and Find Full Text PDF