A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

miR-124-3p promotes BMSC osteogenesis via suppressing the GSK-3β/β-catenin signaling pathway in diabetic osteoporosis rats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study is to investigate miRNAs' effects, targeting the Wnt signaling pathway, on osteogenic differentiation to provide new targets for diabetic osteoporosis treatments. Twelve male rats were divided into a normal rat group (NOR group) and a model rat group (MOD group). Cluster analysis of differentially expressed miRNAs and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. Primary rat bone marrow mesenchymal stem cells (BMSCs) were divided into a high-glucose group and a low-glucose group, and osteogenic differentiation was induced. Alkaline phosphatase (ALP) staining and Alizarin Red staining were used for pathological analysis of the cells. Western blot analysis was used to measure GSK-3β, β-catenin, p-β-catenin, c-Myc, and CyclinD1 expression. Immunofluorescence (IF) was used to analyze the effect of GSK-3β inhibitor (CHIR99021) on β-catenin and CyclinD1 expressions levels in BMSCs. A total of 428 differentially expressed miRNAs were found between the NOR and MOD groups. KEGG analysis showed that the target genes were mostly enriched in signaling pathways, including PI3K-Akt, focal adhesion, AGE-RAGE, HIF-1, and Wnt. qPCR verification demonstrated that miR-124-3p exhibited the greatest difference in expression level. In BMSCs, miR-124-3p overexpression could reverse the inhibited expression of BMSC osteogenic markers, including Alpl, Bglap, and Runx2, induced by high glucose. Western blot analysis revealed that the transfection of miR-124-3p mimics could further reverse the upregulated p-β-catenin and GSK-3β levels and the downregulated c-Myc and CyclinD1 levels induced by high glucose. IF results revealed that BMSCs treated CHIR99021 under high glucose showed the reduced GSK-3β and increased β-catenin and CyclinD1 expression levels. Our research highlighted miRNAs' important roles in regulating the Wnt pathway and provided new information for the diagnosis and treatment of diabetic osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-020-00502-0DOI Listing

Publication Analysis

Top Keywords

diabetic osteoporosis
12
high glucose
12
signaling pathway
8
osteogenic differentiation
8
rat group
8
differentially expressed
8
expressed mirnas
8
kegg analysis
8
western blot
8
blot analysis
8

Similar Publications