98%
921
2 minutes
20
The purpose of this study was to determine how subconcussive head impact exposure in high school collision sport student-athletes influenced cerebrovascular function. Transcranial Doppler was used to assess pre- to post-season changes in: (1) resting middle (MCA) and posterior cerebral arteries (PCA), (2) cerebrovascular reactivity (CVR) via breath-holding index (BHI), vasomotor reactivity response (VMRr) and overall MCA response curve, and (3) neurovascular coupling (NVC) via NVC response magnitude and overall PCA response curve. Fifty-three high school-aged athletes (age = 15.8 ± 1.2years, height = 175.8 ± 8.1cm, mass = 69.4 ± 13.5kg) were recruited into two groups (collision vs. non-collision sport). All participants completed a pre-season cerebrovascular function assessment. Following a 4- to 5-month window (118.6 ± 12.2 days), 48 athletes from the original sample (age = 16.0 ± 1.2 years, height = 175.5 ± 8.1 cm, mass = 68.6 ± 4.0 kg) repeated the cerebrovascular assessment. There were no group differences in any cerebrovascular measures at pre-season testing ( > 0.05). At post-season testing, collision sport athletes demonstrated greater positive change in BHI (t = -2.21, = 0.03) while non-collision sport athletes demonstrated greater negative change in the NVC response magnitude to the reading task (t = 1.98, = 0.048), and lower overall PCA response curve to the reading task ( = 101.54, < 0.001). All other pre- to post-season change values were non-significant ( > 0.05). Our data indicate that single-season changes in cerebrovascular outcomes may differ between collision and non-collision sport athletes. Although the clinical interpretation is still unclear, our study demonstrates that CVR and NVC assessments may be sensitive to the dynamic cerebrovascular changes occurring in adolescent athletes. Future research should continue to assess these outcomes following both subconcussive head impact exposure and throughout the recovery trajectory following concussion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2020.7350 | DOI Listing |
ObjectiveThis work examined performance costs for a spatial integration task when two sources of information were presented at increasing eccentricities with an augmented-reality (AR) head-mounted display (HMD).BackgroundSeveral studies have noted that different types of tasks have varying costs associated with the spatial proximity of information that requires mental integration. Additionally, prior work has found a relatively negligible role of head movements associated with performance costs.
View Article and Find Full Text PDFRetina
September 2025
Retina Division, Stein Eye Institute, University of California of Los Angeles, Los Angeles, California.
Purpose: To describe the clinical and multimodal imaging features of a novel form of macular neovascularization (MNV), designated Type 4 MNV, defined by mixed Type 1 and Type 2 neovascularization (NV), extensive intraretinal anastomotic NV, and central posterior hyaloid fibrosis (CPHF).
Methods: This multicenter retrospective observational case series included patients with neovascular age-related macular degeneration (AMD) exhibiting both Type 1 and 2 MNV and an overlying anastomotic intraretinal NV network. This was confirmed with OCT and OCT angiography (OCTA).
J Appl Physiol (1985)
September 2025
Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Sydney, NSW, Australia.
Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDFNat Sci Sleep
September 2025
Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.
Aim: Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse during sleep, resulting in frequent cortical arousals. However, currently used frequency-based arousal metrics do not sufficiently capture the heterogeneity and clinical significance of arousal responses. The odds ratio product (ORP) is a novel electroencephalographic marker that provides a continuous assessment of sleep depth and has the potential to serve as an objective measure of arousal intensity.
View Article and Find Full Text PDF