A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Integrated in silico Approach and in vitro Study for the Discovery of Small-Molecule USP7 Inhibitors as Potential Cancer Therapies. | LitMetric

An Integrated in silico Approach and in vitro Study for the Discovery of Small-Molecule USP7 Inhibitors as Potential Cancer Therapies.

ChemMedChem

Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, Bahcesehir University School of Medicine, Batman Sk. No: 66, Kadıköy, İstanbul, 34734, Turkey.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ubiquitin-specific protease 7 (USP7) is a highly promising well-validated target for a variety of malignancies. USP7 is critical in regulating the tumor suppressor p53 along with numerous epigenetic modifiers and transcription factors. Previous studies showed that USP7 inhibitors led to increased levels of p53 and anti-proliferative effects in hematological and solid tumor cell lines. Thus, this study aimed to identify potent and safe USP7 hit inhibitors as potential anti-cancer therapeutics via an integrated computational approach that combines pharmacophore modeling, molecular docking, molecular dynamics (MD) simulations and post-MD free energy calculations. In this study, the crystal structure of USP7 has been extensively investigated using a combination of three different chemical pharmacophore modeling approaches. We then screened ∼220.000 drug-like small molecule library and the hit ligands predicted to be nontoxic were evaluated further. The identified hits from each pharmacophore modeling study were further examined by 1-ns short MD simulations and MM/GBSA free energy analysis. In total, we ran 1 ns MD simulations for 1137 selected on small compounds. Based on their average MM/GBSA scores, 18 ligands were selected for 50 ns MD simulations along with one highly potent USP7 inhibitor used as a positive control. The in vitro enzymatic inhibition assay testing of our lead 18 molecules confirmed that 7 of these molecules were successful in USP7 inhibition. Screening results showed that within the used screening approaches, the most successful one was structure-based pharmacophore modeling with the success rate of 75 %. The identification of potent and safe USP7 small molecules as potential inhibitors is a step closer to finding appropriate effective therapies for cancer. Our lead ligands can be used as a scaffold for further structural optimization and development, enabling further research in this promising field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202000675DOI Listing

Publication Analysis

Top Keywords

pharmacophore modeling
16
usp7
9
usp7 inhibitors
8
inhibitors potential
8
potent safe
8
safe usp7
8
free energy
8
integrated silico
4
silico approach
4
approach in vitro
4

Similar Publications