Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Copy number variation (CNV) has been associated with idiopathic short stature, small for gestational age and Silver-Russell syndrome (SRS). It has not been extensively investigated in growth hormone insensitivity (GHI; short stature, IGF-1 deficiency and normal/high GH) or previously in IGF-1 insensitivity (short stature, high/normal GH and IGF-1).

Design And Methods: Array comparative genomic hybridisation was performed with ~60 000 probe oligonucleotide array in GHI (n = 53) and IGF-1 insensitivity (n = 10) subjects. Published literature, mouse models, DECIPHER CNV tracks, growth associated GWAS loci and pathway enrichment analyses were used to identify key biological pathways/novel candidate growth genes within the CNV regions.

Results: Both cohorts were enriched for class 3-5 CNVs (7/53 (13%) GHI and 3/10 (30%) IGF-1 insensitivity patients). Interestingly, 6/10 (60%) CNV subjects had diagnostic/associated clinical features of SRS. 5/10 subjects (50%) had CNVs previously reported in suspected SRS: 1q21 (n = 2), 12q14 (n = 1) deletions and Xp22 (n = 1), Xq26 (n = 1) duplications. A novel 15q11 deletion, previously associated with growth failure but not SRS/GHI was identified. Bioinformatic analysis identified 45 novel candidate growth genes, 15 being associated with growth in GWAS. The WNT canonical pathway was enriched in the GHI cohort and CLOCK was identified as an upstream regulator in the IGF-1 insensitivity cohorts.

Conclusions: Our cohort was enriched for low frequency CNVs. Our study emphasises the importance of CNV testing in GHI and IGF-1 insensitivity patients, particularly GHI subjects with SRS features. Functional experimental evidence is now required to validate the novel candidate growth genes, interactions and biological pathways identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592635PMC
http://dx.doi.org/10.1530/EJE-20-0474DOI Listing

Publication Analysis

Top Keywords

igf-1 insensitivity
24
short stature
12
candidate growth
12
growth genes
12
ghi igf-1
8
insensitivity patients
8
associated growth
8
novel candidate
8
igf-1
7
insensitivity
7

Similar Publications

Efficacy of cartilage-targeted IGF-1 in a mouse model of growth hormone insensitivity.

Front Endocrinol (Lausanne)

May 2025

Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States.

Recombinant human IGF-1 is used to treat severe primary IGF-1 deficiency, but this treatment requires twice-daily injection, often does not fully correct the growth deficit, and has important off-target effects. We therefore sought to target IGF-1 to growth plate cartilage by generating fusion proteins combining IGF-1 with single-chain human antibody fragments that target matrilin-3, a cartilage matrix protein. We previously showed that this cartilage-targeting IGF-1 fusion protein (CV1574-1) promoted growth plate function in a GH-deficient (lit) mouse model.

View Article and Find Full Text PDF

Introduction: Laron syndrome (LS) is a rare autosomal recessive disorder caused by mutations in the growth hormone (GH) receptor gene, resulting in GH resistance and reduced levels of insulin-like growth factor 1 (IGF-1). Patients with LS exhibit severe growth retardation, low IGF-1 levels, elevated basal GH, and poor response to GH stimulation. Recombinant IGF-1 is the only approved treatment and has been shown to improve linear growth.

View Article and Find Full Text PDF

Context: Body proportions are the objective parameters of harmonious growth and reflect the interplay of genetic, environmental, metabolic, and hormonal actions. Mutations in the growth hormone receptor gene (GHR) result in severe growth failure. The study of individuals affected with these mutations can inform us about the role of growth peptides in harmonious, proportional growth.

View Article and Find Full Text PDF

Growth hormone insensitivity syndrome (GHIS) is a rare genetic disorder characterized by short stature due to the body's inability to effectively utilize growth hormone (GH). This case report describes a patient with concurrent hypothyroidism and GHIS. This patient is an 11-year-old female presented with short stature; general examination suggested a prominent forehead and a depressed nasal bridge.

View Article and Find Full Text PDF

Introduction: The diagnostic yield of genetic analysis in the evaluation of children with short stature depends on associated clinical characteristics, but the additional effect of parental consanguinity has not been well documented.

Methods: This observational case series of 42 short children from 34 consanguineous families was collected by six referral centres of paediatric endocrinology (inclusion criteria: short stature and parental consanguinity). In 18 patients (12 families, group 1), the clinical features suggested a specific genetic defect in the growth hormone (GH) insulin-like growth factor I (IGF-I) axis, and a candidate gene approach was used.

View Article and Find Full Text PDF