Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.0c00492DOI Listing

Publication Analysis

Top Keywords

dna amphiphiles
32
self-assembly dna
20
dna
17
hydrophobic moiety
12
nanostructures
9
self-assembly
9
amphiphiles
9
dna-π amphiphiles
8
building block
8
crafting dna-decorated
8

Similar Publications

Squalene, a natural triterpene with antioxidant, anti-inflammatory, and immunostimulatory properties, holds promise for cancer therapy. Here, we examined a previously developed, diethylene glycol derivative of squalene (SQ-diEG) and investigated its in vivo anti-carcinogenic effects in bladder cancer. C57BL/6 mice were treated with 0.

View Article and Find Full Text PDF

Pseudo-rotaxanes are reversibly interlocked molecules with at least one linear molecule threaded into a macrocycle and, contrary to rotaxanes, an advantageous ability to be dissociated. Cyclodextrins constitute attracting macrocyclic host entities to build such dynamic structures for their oligosaccharide nature, conic shape, amphiphilic character and biocompatibility. Here we show that using an azobenzene DNA intercalator as a guest allows to build a pseudo-rotaxane combining several remarkable properties, including light-controlled assembly/disassembly, photoreversible chirality and fluorescence, as well as the capability to affect the melting temperature of double-stranded DNA through intercalator host-guest complexation.

View Article and Find Full Text PDF

Modified oligonucleotides (oligos) are widely used as convenient tools in many scientific fields, including biomedical applications and therapies. In particular, oligos with lipophilic groups attached to the backbone ensure penetration of the cell membrane without the need for transfection. This study examines the interaction between amphiphilic DNA duplexes, in which one of the chains contains a lipophilic substituent, and several DNA repair proteins, particularly DNA-damage-dependent PARPs, using various biochemical approaches.

View Article and Find Full Text PDF

An AIE-active type I/II photosensitizer with mitochondria-to-nuclei cascade targeting for highly efficient photodynamic cancer therapy.

Mater Today Bio

October 2025

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.

photodynamic therapy (PDT) has emerged as a prominent strategy for the treatment of breast cancer, which is prevalent among women globally. Organelles targeted photosensitizers have brought great promise for enhancing the PDT efficiency. Photosensitizers possessing mitochondria and nuclei dual-targeting, especially those multipled with type I/II reactive oxygen species (ROS) generation and aggregation-induced emission (AIE) characteristics are urgently needed to improve the PDT efficiency.

View Article and Find Full Text PDF

Toroids are cyclic, ring-shaped nanostructures with potential applications in topological materials, encapsulation, and separation. While nanotoroids naturally exist in biological systems (e.g.

View Article and Find Full Text PDF