A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrophobic up-conversion nanocomposite films have been developed based on TEMPO-oxidized cellulose nanofibrils (TOCNF) modified with alkyl ketene dimer (AKD) as a matrix and MF:Ho (M = Ca, Sr) as a phosphor. Fabrication of homogeneous, strong and translucent TOCNF/MF:Ho-AKD films with water contact angle of 123 ± 2° was accomplished with mild drying at 110 °C. These hydrophobic nanocomposite films demonstrated stable up-conversion luminescence in the visible spectral range upon excitation of the I level of Ho ions by laser irradiation at 1912 nm both under ambient conditions and in a humid atmosphere (92 ± 2% humidity). The absence of luminescence quenching in a high humidity atmosphere for TOCNF/MF:Ho-AKD composite films was considered to be due to the reliable shielding effect of the hydrophobic TOCNF-AKD matrix. The films show promise for visualizing 2 μm laser radiation in medicine and monitoring of the atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116866DOI Listing

Publication Analysis

Top Keywords

hydrophobic up-conversion
8
composite films
8
modified alkyl
8
alkyl ketene
8
ketene dimer
8
nanocomposite films
8
films
6
hydrophobic
4
up-conversion carboxylated
4
carboxylated nanocellulose/fluoride
4

Similar Publications