98%
921
2 minutes
20
There is a consensus about negative impacts of droughts in Amazonia. Yet, extreme wet episodes, which are becoming as severe and frequent as droughts, are overlooked and their impacts remain poorly understood. Moreover, drought reports are mostly based on forests over a deep water table (DWT), which may be particularly sensitive to dry conditions. Based on demographic responses of 30 abundant tree species over the past two decades, in this study we analyzed the impacts of severe droughts but also of concurrent extreme wet periods, and how topographic affiliation (to shallow - SWTs - or deep - DWTs - water tables), together with species functional traits, mediated climate effects on trees. Dry and wet extremes decreased growth and increased tree mortality, but interactions of these climatic anomalies had the highest and most positive impact, mitigating the simple negative effects. Despite being more drought-tolerant, species in DWT forests were more negatively affected than hydraulically vulnerable species in SWT forests. Interaction of wet-dry extremes and SWT depth modulated tree responses to climate, providing buffers to droughts in Amazonia. As extreme wet periods are projected to increase and at least 36% of the Amazon comprises SWT forests, our results highlight the importance of considering these factors in order to improve our knowledge about forest resilience to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.17005 | DOI Listing |
Glob Chang Biol
September 2025
European Centre for Medium-Range Weather Forecast (ECMWF), Reading, UK.
The catastrophic Los Angeles Fires of January 2025 underscore the urgent need to understand the complex interplay between hydroclimatic variability and wildfire behavior. This study investigates how sequential wet and dry periods, hydroclimatic rebound events, create compounding environmental conditions that culminate in extreme fire events. Our results show that a cascade of moisture anomalies, from the atmosphere to vegetation health, precedes these fires by around 6-27 months.
View Article and Find Full Text PDFbioRxiv
August 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.
Ticks pose substantial threats to public health. Blacklegged ticks () are responsible for most tick-borne diseases in the US, transmitting seven human pathogens. Molecular surveillance for tick-borne pathogens has been outpaced by their emergence, revealing a critical need to develop agnostic strategies that characterize emerging and putative pathogens.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Guizhou Institute of Technology, Guiyang, 550025, China.
Karst regions face severe water scarcity due to rapid hydrological leakage and complex geological structures. To address this challenge, this study developed a bioinspired porous condensation material by integrating sand-based substrates with optimized hydrophilic-hydrophobic properties and aluminum fiber modifications. Through orthogonal experiments, the optimal formulation (0.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: Climate change, leading to more frequent and intense extreme weather events (EWEs), could significantly impact dengue transmission. However, the associations between EWEs and dengue remains underexplored in the Southeast Asia (SEA) region. We investigated the association between selected EWEs (i.
View Article and Find Full Text PDFSmall
September 2025
Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
Stretchable fiber conductors hold immense potential for revolutionizing wearable electronics, but most reported materials show a decline in conductivity after large strains, significantly hindering their widespread application. In this study, a new strategy for preparing high-performance stretchable conductive core-sheath fibers is proposed using a coaxial wet spinning technique. The inherent superior properties of both styrene-butadiene-styrene (SBS) and liquid metal (LM), along with their synergic interactions, provide robust support for the exceptional tensile characteristics (1860.
View Article and Find Full Text PDF