A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Plume analysis from field evaluations of a portable air quality monitoring system. | LitMetric

Plume analysis from field evaluations of a portable air quality monitoring system.

J Air Waste Manag Assoc

Atmospheric Science Research Center, University at Albany, State University of New York, Albany, NY, USA.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Near-road measurements in Rochester, NY with a Portable Air Quality Monitoring System indicate a significant plume control of PM black carbon (BC) concentrations. This study evaluates the performance of two portable air quality enclosures deployed at collocated research sites to determine their accuracy and usefulness in field deployments, and specifically in pollution plume analysis. One system deployed collocated sensors for measurement of particulate matter mass concentration (Thermo pDR 1500 against Tapered Element Oscillating Microbalance (TEOM) measurement) and the second system deployed sensors for measurement of black carbon (Magee AE33 aethalometer and Brechtel Tricolor Absorption Photometer) in ambient and near-road locations in Rochester, New York, respectively. While the optical PM sensors tended to be biased in their determination of concentration by ~15%, they followed changes and trends in concentration very well. The black carbon sensors in the portable systems agreed very well with each other and with the collocated sensor. As a case study to determine the contribution from statistically significant short-lived excursions of pollutant concentration, Morlet wavelet analysis was performed on data from the portable system sensors. Black carbon was found to be strongly influenced by plume behavior with significant plume excursions representing just over 12% of all data points and contributing on average 1 µg/m of black carbon above ambient concentrations. : This paper first evaluates two air pollutant monitoring enclosures with wide applicability including near-road detection of pollutants. Then, we present a novel method to designate isolate statistically significant excursions in air pollution concentration which can be used to determine the impact of pollutant plumes as observed in PM and black carbon behavior near road.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2020.1834010DOI Listing

Publication Analysis

Top Keywords

black carbon
24
portable air
12
air quality
12
plume analysis
8
quality monitoring
8
monitoring system
8
deployed collocated
8
system deployed
8
sensors measurement
8
black
6

Similar Publications