A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition. | LitMetric

Survival strategies based on the hydraulic vulnerability segmentation hypothesis, for the tea plant [Camellia sinensis(L.) O. Kuntze] in long-term drought stress condition.

Plant Physiol Biochem

Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Center of Utilization of Functional Ingredie

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tea plants are important economic perennial crops that can be negatively impacted by drought stress (DS). However, their survival strategies in long-term DS conditions and the accumulation and influence of metabolites and mineral elements (MEs) in their organs, when facing hydraulic vulnerability segmentation, require further investigation. The MEs and metabolites in the leaf, stem, and root after long-term DS (20 d) were examined here, using inductively coupled plasma optical emission spectrometry (ICP-OES) and liquid chromatograph-mass spectrometry (LC-MS). The accumulation patterns of 116 differentially accumulated metabolites (DAMs) and nine MEs were considerably affected in all organs. The concentration of all MEs varied significantly in at least one organ, while the K and Ca levels were markedly altered in all three. Most DAM levels increased in the stem but decreased in the root and leaf, implying that vulnerability segmentation may occur with long-term DS. The typical nitrogen- and carbon-compound levels similarly increased in the stem and decreased in the leaf and root, as the plant might respond to long-term DS by stabilizing respiration, promoting nitrogen recycling, and free radical scavenging. Correlation analysis showed several possible DAM-ME interactions and an association between Mn and flavonoids. Thus, survival strategies under long-term DS included sacrificing distal/vulnerable organs and accumulating function-specialized metabolites and MEs to mitigate drought-induced oxidative damage. This is the first study that reports substance fluctuations after long-term DS in different organs of plants, and highlights the need to use whole plants to fully comprehend stress response strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.09.034DOI Listing

Publication Analysis

Top Keywords

survival strategies
12
vulnerability segmentation
12
hydraulic vulnerability
8
drought stress
8
strategies long-term
8
levels increased
8
increased stem
8
stem decreased
8
long-term
7
mes
5

Similar Publications