A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Colloidal-like aggregation of a functional amyloid protein. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Functional amyloid proteins are self-secreted by microbial cells that aggregate into extracellular networks and provide microbial colonies with mechanical stability and resistance to antibiotic treatment. In order to understand the formation mechanism of functional amyloid networks, their aggregation has been studied in vitro under different physical conditions, such as temperature, salt concentration, and pH. Typical aggregates' morphologies include fibers or plaques, the latter resembling amyloid aggregates in neurodegenerated brains. Here, we studied the pH-reduction-induced aggregation of TasA, an extracellular functional amyloid appearing as fibers in biofilms of the soil bacterium, Bacillus subtilis. We used turbidity and zeta potential measurements, electron microscopy, atomic force microscopy, and static light scattering measurements, to characterize the aggregates of TasA and to compare them with colloidal aggregates. We further studied the aggregation of TasA in the presence of negatively charged nanoparticles and showed that nanoparticles co-aggregated with TasA, and that the co-aggregation was hindered sterically. Based on these studies, we concluded that, similarly to colloidal aggregation, TasA aggregation occurs due to surface potential modulations and that the aggregation is followed by a rearrangement process. Shedding light on the aggregation mechanism of TasA, our results can be used for the design of TasA aggregation inhibitors and promoters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03265dDOI Listing

Publication Analysis

Top Keywords

functional amyloid
16
aggregation tasa
12
aggregation
8
tasa aggregation
8
tasa
7
amyloid
5
colloidal-like aggregation
4
functional
4
aggregation functional
4
amyloid protein
4

Similar Publications