98%
921
2 minutes
20
Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at -46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529764 | PMC |
http://dx.doi.org/10.1038/s41467-020-18424-6 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany.
Stimuli-responsive (multiphase) coacervates deserve significant attention as cell-like entities that can adapt to their environment and undergo morphological reconfiguration. In this study, a tandem-triggered transition system is presented that enables the transformation of single-phase coacervates into multiphase structures through the sequential application of two external stimuli: pH and salt concentration. A polyanion containing acid-labile amide bond is incorporated into the membrane-less coacervates.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 16, 64287 Darmstadt, Germany.
Helical structures are ubiquitous in nature and exhibit fascinating properties. They are inherently chiral, and many rely on hydrogen bonds to stabilize their conformation. Homopolypeptides of the glutamate type form α-helical secondary structures and are considered rigid-rod polymers.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Power China Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 310014, PR China.
Zero-valent bismuth (Bi) nanospheres with a hollow structure were synthesized via a polyvinylpyrrolidone (PVP)-assisted solvothermal method and applied as efficient photocatalysts for the sacrificial-agent-free photoreduction of bromate (BrO) under ultraviolet (UV) irradiation. The optimized Bi-0.6 catalyst exhibited a narrowed band gap and enhanced charge separation efficiency, achieving 99.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Ordos Laboratory, Inner
Currently, electrocatalytic conversion of carbon dioxide into higher-value compounds is a promising approach. However, developing a stable and efficient catalyst with high selectivity for specific products remains a major challenge. Herein, we constructed a bismuth-based metal-organic framework (Bi-MOF) as a catalyst for the catalytic production of formic acid from carbon dioxide, to which different ratios of tin metal elements were doped.
View Article and Find Full Text PDFNat Prod Res
September 2025
Shaanxi Jinhuifang Traditional Chinese Medicine Technology Co., Ltd., Zhenba, China.
Rhamnosyl Icariside II, a rare secondary flavonoid glycoside in , exhibits superior stability and bioactivity than the primary flavonoid glycosides. Converting primary flavonoid glycoside into Rhamnosyl Icariside II is desirable due to separate extraction methods are inefficient. In this study, a recyclable biphasic enzymatic hydrolysis process of extracts to produce high purity RIc was established and optimised.
View Article and Find Full Text PDF