98%
921
2 minutes
20
Objective: Eicosanoids modulate inflammation via complex networks involving different pathways and downstream mediators, including oxylipins. Although altered eicosanoids are linked to rheumatoid arthritis (RA), suggesting that metabolization is enhanced, the role of oxylipins in disease stratification remains unexplored. This study was undertaken to characterize oxylipin networks during the earliest stages of RA and evaluate their associations with clinical features and treatment outcomes.
Methods: In total, 60 patients with early RA (according to the American College of Rheumatology/European League Against Rheumatism 2010 criteria), 11 individuals with clinically suspect arthralgia (CSA), and 28 healthy control subjects were recruited. Serum samples were collected at the time of onset. In the early RA group, 50 patients who had not been exposed to disease-modifying antirheumatic drug (DMARD) or glucocorticoid treatment at the time of recruitment were prospectively followed up at 6 and 12 months after having received conventional synthetic DMARDs. A total of 75 oxylipins, mostly derived from arachidonic, eicosapentanoic, and linoleic acids, were identified in the serum by liquid chromatography tandem mass spectrometry.
Results: Univariate analyses demonstrated differences in expression patterns of 14 oxylipins across the RA, CSA, and healthy control groups, with each exhibiting a different trajectory. Network analyses revealed a strong grouping pattern of oxylipins in RA patients, whereas in individuals with CSA, a fuzzy network of oxylipins with higher degree and closeness was found. Partial least-squares discriminant analyses yielded variable important projection scores of >1 for 22 oxylipins, which allowed the identification of 2 clusters. Cluster usage differed among the groups (P = 0.003), and showed associations with disease severity and low rates of remission at 6 and 12 months in RA patients who were initially treatment-naive. Pathway enrichment analyses revealed different precursors and pathways between the groups, highlighting the relevance of the arachidonic acid pathway in individuals with CSA and the lipooxygenase pathway in patients with early RA. In applying distinct oxylipin signatures, subsets of seropositive and seronegative RA could be identified.
Conclusion: Oxylipin networks differ across stages during the earliest phases of RA. These distinct oxylipin networks could potentially elucidate pathways with clinical relevance for disease progression, clinical heterogeneity, and treatment response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914204 | PMC |
http://dx.doi.org/10.1002/art.41537 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom.
12/15-lipoxygenase (12/15-LOX, ) generates bioactive oxygenated lipids during inflammation, however its homeostatic role(s) in normal healing are unclear. Here, the role of 12/15-LOX in resolving skin wounds was elucidated, focusing on how its lipids act together in physiologically relevant amounts. In mice, wounding caused acute appearance of 12/15-LOX-expressing macrophages and stem cells, coupled to early generation of ~12 monohydroxy-oxylipins and enzymatically oxidized phospholipids (eoxPL).
View Article and Find Full Text PDFSci Rep
August 2025
Department of Clinical Laboratory Medicine, The Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
Thrombosis is a life-threatening complication in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This study aims to conduct a statistical analysis of the incidence of blood clots and lipid concentrations, and to examine the networks of oxylipins in hospitalised patients with SARS-CoV-2. Serum samples of 1731 hospitalised patients with SARS-COV-2 were used to measure six lipid parameters: total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A (apoA), and apolipoprotein B (apoB).
View Article and Find Full Text PDFPlant Signal Behav
September 2024
Division of Biotechnology, Jeonbuk National University, Jeollabuk-do, Republic of Korea.
Light plays a pivotal role in regulating plant physiological processes. However, the influence of specific light wavelengths on plant defense to pathogen infection remains insufficiently explored. We investigated the role of different light wavelengths, with a particular focus on green light (GL), in modulating disease responses and signaling in Arabidopsis.
View Article and Find Full Text PDFChemistry
August 2025
Institut des Biomolécules Max Mousseron, IBMM, Univ. Montpellier, CNRS, ENSCM, 1919 route de Mende, Montpellier, 34293, France.
Neuroprostanes (NeuroPs) are bioactive oxylipins formed in vivo from docosahexaenoic acid (DHA), the main polyunsaturated fatty acid of the human brain, by a nonenzymatic auto-oxidative process as mixtures of regio- and diastereoisomers. Thus, synthetic material is necessary to unlock their potential as oxidative stress biomarkers as well as to investigate the biological properties of individual NeuroP molecules. Despite recent advances in the field, cyclopentenone-type NeuroPs have received limited attention.
View Article and Find Full Text PDFPLoS One
July 2025
Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
Understanding the complex networks underlying the biotic stress response in maize is crucial for developing effective approaches to improve tolerance. We identified 1449 differentially expressed genes (DEGs) by meta-analysis of the public microarray gene expression profile. Weighted Gene Co-expression Network Analysis on the DEGs resulted in positive module-trait correlation (0.
View Article and Find Full Text PDF