98%
921
2 minutes
20
Epidural electrical stimulation can restore limb motor function after spinal cord injury by reactivating the surviving neural circuits. In previous epidural electrical stimulation studies, single electrode sites and continuous tetanic stimulation have often been used. With this stimulation, the body is prone to declines in tolerance and locomotion coordination. In the present study, rat models of complete spinal cord injury were established by vertically cutting the spinal cord at the T8 level to eliminate disturbance from residual nerve fibers, and were then subjected to epidural electrical stimulation. The flexible extradural electrode had good anatomical topology and matched the shape of the spinal canal of the implanted segment. Simultaneously, the electrode stimulation site was able to be accurately applied to the L2-3 and S1 segments of the spinal cord. To evaluate the biocompatibility of the implanted epidural electrical stimulation electrodes, GFAP/Iba-1 double-labeled immunofluorescence staining was performed on the spinal cord below the electrodes at 7 days after the electrode implantation. Immunofluorescence results revealed no significant differences in the numbers or morphologies of microglia and astrocytes in the spinal cord after electrode implantation, and there was no activated Iba-1 cell aggregation, indicating that the implant did not cause an inflammatory response in the spinal cord. Rat gait analysis showed that, at 3 days after surgery, gait became coordinated in rats with spinal cord injury under burst stimulation. The regained locomotion could clearly distinguish the support phase and the swing phase and dynamically adjust with the frequency of stimulus distribution. To evaluate the matching degree between the flexible epidural electrode (including three stimulation contacts), vertebral morphology, and the level of the epidural site of the stimulation electrode, micro-CT was used to scan the thoracolumbar vertebrae of rats before and after electrode implantation. Based on the experimental results of gait recovery using three-site stimulation electrodes at L2-3 and S1 combined with burst stimulation in a rat model of spinal cord injury, epidural electrical stimulation is a promising protocol that needs to be further explored. This study was approved by the Animal Ethics Committee of Chinese PLA General Hospital (approval No. 2019-X15-39) on April 19, 2019.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996032 | PMC |
http://dx.doi.org/10.4103/1673-5374.290905 | DOI Listing |
Neurology
October 2025
Department of Radiology, Mayo Clinic, Rochester, MN.
Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.
Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).
J Neurotrauma
September 2025
Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, California, USA.
Spinal cord injury (SCI) results in an array of debilitating, sometimes permanent-and at times life-threatening-motor, sensory, and autonomic deficits. A broad range of therapies have been tested pre-clinically, and there has been a significant acceleration in recent years of clinical translation of potential treatments. However, it is widely appreciated among scientists and clinical professionals alike that there likely is no "silver bullet" (single treatment) that will result in complete functional restoration after SCI.
View Article and Find Full Text PDFTissue Eng Part B Rev
September 2025
Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.
View Article and Find Full Text PDFAnn Acad Med Singap
August 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore.
Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.
View Article and Find Full Text PDFAust Vet J
September 2025
Small Animal Specialist Hospital, North Ryde, New South Wales, Australia.
Syringomyelia is a common and heritable disorder in Cavalier King Charles Spaniels (CKCS), characterised by fluid accumulation within the spinal cord that may result in pain and neurological dysfunction. The prevalence of syringomyelia in CKCS in Australia has not previously been reported. The goal of this study was to assess the prevalence and severity of syringomyelia in magnetic resonance imaging (MRI)-screened breeding CKCS in New South Wales, Australia, from 2008 to 2024, and to evaluate changes over time.
View Article and Find Full Text PDF