Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human tumor cells in a 3-dimensional (3D) spheroid can reflect the characteristics of solid tumors by forming cell-cell interactions and microenvironments. This makes 3D cell culture useful for preclinical stability and drug efficacy tests. In this study, the drug delivery and action mechanisms in SK-N-SH neuroblastoma cells cultured in 3D spheroids were quantitatively compared to those cultured in 2D monolayers using confocal microscopy imaging and inductively coupled plasma-mass spectrometry. In the 3D spheroids, cisplatin only accessed the surface, accumulating in the cells on the spheroid exterior. As a result, an increased cellular amount of cisplatin was required to obtain similar cytotoxicity in the 3D spheroid cells to that in 2D monolayers. The mechanisms of reduction of drug efficacy by dimethyl sulfoxide (DMSO) in the 3D spheroid cells compared to those in the 2D monolayer cells were further investigated. DMSO reduced the drug cytotoxicity by forming stable DMSO-substituted compounds that inhibited the cellular uptake of cisplatin and DNA-Pt adduct formation. The quantitative analysis used in this study is promising for understanding drug delivery and drug action mechanisms in cells in various microenvironments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0an01518kDOI Listing

Publication Analysis

Top Keywords

drug delivery
12
spheroid cells
12
cells
8
quantitative analysis
8
drug efficacy
8
action mechanisms
8
drug
6
spheroid
5
probing drug
4
mechanisms
4

Similar Publications

Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF

The multifunctional systems presented here introduce an innovative and deeply thought-out approach to the more effective and safer use of temozolomide (TMZ) in treating glioma. The developed hydrogel-based flakes were designed to address the issues of local GBL therapy, bacterial neuroinfections, and the bleeding control needed during tumor resection. The materials obtained comprise TMZ and vancomycin (VANC) loaded into cyclodextrin/polymeric capsules and embedded into gelatin/hyaluronic acid/chitosan-based hydrogel films cross-linked with genipin.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) remains one of the most aggressive primary brain tumors with poor survival outcomes and a lack of approved therapies. A promising novel approach for GBM is the application of photodynamic therapy (PDT), a localized, light-activated treatment using tumor-selective photosensitizers. This narrative review describes the mechanisms, delivery systems, photosensitizers, and available evidence regarding the potential of PDT as a novel therapeutic approach for GBM.

View Article and Find Full Text PDF