98%
921
2 minutes
20
Alström syndrome (ALMS) is a rare autosomal recessive multi-organ syndrome considered to date as a ciliopathy and caused by variations in . Phenotypic variability is well-documented, particularly for the systemic disease manifestations; however, early-onset progressive retinal degeneration affecting both cones and rods (cone-rod type) is universal, leading to blindness by the teenage years. Other features include cardiomyopathy, kidney dysfunction, sensorineural deafness, and childhood obesity associated with hyperinsulinemia and type 2 diabetes mellitus. Here, we present an unusual and delayed retinal dystrophy phenotype associated with ALMS in a 14-year-old female, with affected cone function and surprising complete preservation of rod function on serial electroretinograms (ERGs). High-throughput sequencing of the affected proband revealed compound heterozygosity with two novel nonsense variations in the gene, including one variant of inheritance, an unusual finding in autosomal recessive diseases. To confirm the diagnosis in the context of an unusually mild phenotype and identification of novel variations, we demonstrated the biallelic status of the compound heterozygous variations (c.[286C > T];[1211C > G], p.[(Gln96)];[(Ser404)]). This unique case extends our knowledge of the phenotypic variability and the pathogenic variation spectrum in ALMS patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472914 | PMC |
http://dx.doi.org/10.3389/fgene.2020.00938 | DOI Listing |
Genet Med
September 2025
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:
Purpose: Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare cancer susceptibility syndrome exclusively attributable to pathogenic variants in FH (HGNC:3700). This paper quantitatively weights the phenotypic context (PP4/PS4) of such very rare variants in FH.
Methods: We collated clinical diagnostic testing data on germline FH variants from 387 individuals with HLRCC and 1,780 individuals with renal cancer, and compared the frequency of 'very rare' variants in each phenotypic cohort against 562,295 population controls.
ESC Heart Fail
September 2025
Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.
Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.
View Article and Find Full Text PDFCurr Opin Neurol
October 2025
Neuromuscular Diseases Unit, Department of Neurology, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, CIBERER, Barcelona, Spain.
Purpose Of Review: Autoimmune nodopathies (AN) are a recognized distinct group of immune-mediated peripheral neuropathies with unique immunopathological features and therapeutic implications. This review synthesizes recent advances in their pathogenesis, diagnosis, and management, which have refined their clinical classification and informed targeted treatment strategies.
Recent Findings: AN are characterized by autoantibodies targeting surface proteins in the nodal-paranodal area (anti-contactin-1, anti-contactin-associated protein 1, anti-neurofascin-155, anti-pan-neurofascin), predominantly of IgG4 subclass.
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.