A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Transient top-down and bottom-up effects of resources pulsed to multiple trophic levels. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pulsed fluxes of organisms across ecosystem boundaries can exert top-down and bottom-up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect effects on other components of the system. While previous theoretical and empirical studies demonstrate the influence of allochthonous subsidies on bottom-up and top-down processes, understanding how these forces act in conjunction is still limited, particularly when an allochthonous resource can simultaneously subsidize multiple trophic levels. Using the Lake Mývatn region in Iceland as an example system of allochthony and its potential effects on multiple trophic levels, we analyzed a mathematical model to evaluate how pulsed subsidies of aquatic insects affect the dynamics of a soil-plant-arthropod food web. We found that the relative balance of top-down and bottom-up effects on a given food web compartment was determined by trophic position, subsidy magnitude, and top predators' ability to exploit the subsidy. For intermediate trophic levels (e.g., detritivores and herbivores), we found that the subsidy could either alleviate or intensify top-down pressure from the predator. For some parameter combinations, alleviation and intensification occurred sequentially during and after the resource pulse. The total effect of the subsidy on detritivores and herbivores, including top-down and bottom-up processes, was determined by the rate at which predator consumption saturated with increasing size of the allochthonous subsidy, with greater saturation leading to increased bottom-up effects. Our findings illustrate how resource pulses to multiple trophic levels can influence food web dynamics by changing the relative strength of bottom-up and top-down effects, with bottom-up predominating top-down effects in most scenarios in this subarctic system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3197DOI Listing

Publication Analysis

Top Keywords

trophic levels
24
top-down bottom-up
16
bottom-up effects
16
multiple trophic
16
food web
12
effects
9
bottom-up
8
bottom-up top-down
8
detritivores herbivores
8
top-down effects
8

Similar Publications