Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Network and systems medicine has rapidly evolved over the past decade, thanks to computational and integrative tools, which stem in part from systems biology. However, major challenges and hurdles are still present regarding validation and translation into clinical application and decision making for precision medicine. In this context, the Collaboration on Science and Technology Action on Open Multiscale Systems Medicine (OpenMultiMed) reviewed the available advanced technologies for multidimensional data generation and integration in an open-science approach as well as key clinical applications of network and systems medicine and the main issues and opportunities for the future. The development of multi-omic approaches as well as new digital tools provides a unique opportunity to explore complex biological systems and networks at different scales. Moreover, the application of findable, applicable, interoperable, and reusable principles and the adoption of standards increases data availability and sharing for multiscale integration and interpretation. These innovations have led to the first clinical applications of network and systems medicine, particularly in the field of personalized therapy and drug dosing. Enlarging network and systems medicine application would now imply to increase patient engagement and health care providers as well as to educate the novel generations of medical doctors and biomedical researchers to shift the current organ- and symptom-based medical concepts toward network- and systems-based ones for more precise diagnoses, interventions, and ideally prevention. In this dynamic setting, the health care system will also have to evolve, if not revolutionize, in terms of organization and management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500076PMC
http://dx.doi.org/10.1089/nsm.2020.0004DOI Listing

Publication Analysis

Top Keywords

systems medicine
28
network systems
20
medicine
8
collaboration science
8
science technology
8
technology action
8
action open
8
open multiscale
8
systems
8
multiscale systems
8

Similar Publications

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF

Background: The success of disease registry systems (DRSs) depends on developing software that aligns with the registry's specific needs.

Objective: This study focuses on localising the Checklist with Items for Patient Registry sOftware Systems (CIPROS) to facilitate the DRS assessment.

Method: This applied and cross-sectional study was carried out in 2023 in six phases.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.

View Article and Find Full Text PDF

Background: Transforming Clinical Practice Guideline (CPG) recommendations into computer readable language is a complex and ongoing process that requires significant resources, including time, expertise, and funds. The objective is to provide an extension of the widely used GIN-McMaster Guideline Development Checklist (GDC) and Tool for the development of computable guidelines (CGs).

Methods: Based on an outcome from the Human Centered Design (HCD) workshop hosted by the Guidelines International Network North America (GIN-NA), a team was formed to develop the checklist extension.

View Article and Find Full Text PDF