Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cryptochromes and photolyases are blue-light photoreceptors and DNA-repair enzymes, respectively, with conserved domains and a common ancestry [1-3]. Photolyases use UV-A and blue light to repair lesions in DNA caused by UV radiation, photoreactivation, although cryptochromes have specialized roles ranging from the regulation of photomorphogenesis in plants, to clock function in animals [4-7]. A group of cryptochromes (cry-DASH) [8] from bacteria, plants, and animals has been shown to repair in vitro cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA (ssDNA), but not in double-stranded DNA (dsDNA) [9]. Cry-DASH are evolutionary related to 6-4 photolyases and animal cryptochromes, but their biological role has remained elusive. The analysis of several crystal structures of members of the cryptochrome and photolyase family (CPF) allowed the identification of structural and functional similarities between photolyases and cryptochromes [8, 10-12] and led to the proposal that the absence of dsDNA repair activity in cry-DASH is due to the lack of an efficient flipping of the lesion into the catalytic pocket [13]. However, in the fungus Phycomyces blakesleeanus, cry-DASH has been shown to be capable of repairing CPD lesions in dsDNA as a bona fide photolyase [14]. Here, we show that cry-DASH of a related fungus, Mucor circinelloides, not only repairs CPDs in dsDNA in vitro but is the enzyme responsible for photoreactivation in vivo. A structural model of the M. circinelloides cry-DASH suggests that the capacity to repair lesions in dsDNA is an evolutionary adaptation from an ancestor that only had the capacity to repair lesions in ssDNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2020.08.051 | DOI Listing |