Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Keloids represent chronic fibroproliferative skin disorders in which there is deposition of extracellular components, especially type 1 collagen, fibronectin and elastin, in excessive amounts. NEDD4 is associated with fibrosis found in abnormal wound healing through increased fibroblast proliferation and regulation of type 1 collagen expression. The exact etiology of keloid formation is undefined, but the role of genetic factors was demonstrated.

Objective: To investigate the polymorphism of the NEDD4 gene rs8032158 in a sample of Egyptian patients who have keloids.

Methods: The current case-control study was conducted in 160 unrelated subjects; 100 keloid patients and 60 ages and sex coincided with apparently healthy controls. All subjects underwent a complete history, and weight and length were measured to calculate body mass index (BMI). The Vancouver Scar Scale (VSS) was used to assess keloid severity. An analysis of the polymorphism of the NEDD4 gene rs8032158 T/C was performed using taqman allelic discrimination (real-time PCR).

Results: The rs8032158 CC genotype was observed significantly in keloid patients and increased the risk of keloid development by approximately 2 times (p = 0.003, OR = 1.80). The C allele significantly increased the risk of keloid development by approximately 2 times (P = 0.002, OR = 2.08). The carriers of the CC genotype were significantly associated with severe keloid form and with the highest VSS values.

Conclusion: The polymorphism of the NEDD4 gene rs8032158 could participate in the formation of keloids in the Egyptian population. The NEDD4 rs8032158 CC genotype may have a role in keloid severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467735PMC
http://dx.doi.org/10.2147/CCID.S253603DOI Listing

Publication Analysis

Top Keywords

nedd4 gene
16
keloid development
12
polymorphism nedd4
12
gene rs8032158
12
keloid
9
egyptian population
8
type collagen
8
keloid patients
8
keloid severity
8
rs8032158 genotype
8

Similar Publications

Deep Learning-Driven Proteomics Analysis for Gene Annotation in the Renin-Angiotensin System.

Eur J Pharmacol

September 2025

Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, USA; Department of Pharmacology & Experimental Therapeutics, New Orleans, LA, 70112 USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA. Electronic addr

The renin-angiotensin system (RAS) is central to cardiovascular diseases such as hypertension and cardiomyopathy, yet the functions of many RAS genes remain unclear. This study developed a multi-label deep learning model to systematically annotate RAS gene functions and elucidate their roles in biological pathways. A total of 39,463 RAS-related publications from PubMed and PMC were processed into text format.

View Article and Find Full Text PDF

Objective: This study aims to explore the causal relationship between programmed cell death (PCD) genes and the formation of hypertrophic scars (HS) using integrative multi-omics analysis (including DNA methylation, gene expression, and protein abundance) alongside preliminary experimental validation.

Methods: We leveraged publicly available databases (eQTL Gen, UKB-PPP, and FinnGen) to obtain quantitative trait loci (QTLs) data of DNA methylation, gene expression and protein abundance. We employed Mendelian randomization (MR) approaches to uncover causal relationships and validate robustness.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) accounts for approximately 15% of primary lung carcinomas and has the poorest outcome in all subtypes of lung cancer. The major hurdle for SCLC treatment failure is resistance to platinum-based chemotherapy. Therefore, an unmet need is to discover new targets that promote SCLC progression and chemoresistance.

View Article and Find Full Text PDF

Intranodal palisaded myofibroblastomas with amianthoid fibers (IPM) are rare mesenchymal neoplasms showing a myofibroblastic differentiation. Histopathologically, they might be difficult to distinguish from schwannoma or other neoplasia with spindle cell morphology, especially on limited biopsies. CTNNB1 gene variants have been detected in at least 50% of tumors.

View Article and Find Full Text PDF

The Functions and Mechanisms of the Cohesin Complex in Regulating the Fate Determinations of Stem Cells.

Research (Wash D C)

July 2025

Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Basic Medicine, Hunan 410013, China.

Stem cells have important applications in both regenerative and reproductive medicine. The cohesin complex comprises 4 core subunits, namely, SMC1, SMC3, RAD21, and STAG, and notably, it plays pivotal roles in controlling the fate determinations of stem cells by facilitating the dynamic regulation of the 3-dimensional genome architecture. We have recently reported that RAD21 forms a complex with YAP1 and NEDD4 to promote the self-renewal of human spermatogonial stem cells and inhibit their apoptosis.

View Article and Find Full Text PDF