Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BACKGROUNDPhysical frailty in older individuals is characterized by subjective symptoms of fatigue and exercise intolerance (EI). Objective abnormalities in skeletal muscle (SM) mitochondrial high-energy phosphate (HEP) metabolism contribute to EI in inherited myopathies; however, their presence or link to EI in the frail older adult is unknown.METHODSHere, we studied 3 groups of ambulatory, community-dwelling adults with no history of significant coronary disease: frail older (FO) individuals (81 ± 2.7 years, mean ± SEM), nonfrail older (NFO) individuals (79 ± 2.0 years), and healthy middle-aged individuals, who served as controls (CONT, 51 ± 2.1 years). Lower extremity SM HEP levels and mitochondrial function were measured with 31P magnetic resonance (MR) techniques during graded multistage plantar flexion exercise (PFE). EI was quantified by a 6-minute walk (6MW) and peak oxygen consumption during cardiopulmonary testing (peak VO2).RESULTSDuring graded exercise, FO, NFO, and CONT individuals all fatigued at similar SM HEP levels, as measured by 31P-MR. However, FO individuals fatigued fastest, with several-fold higher rates of PFE-induced HEP decline that correlated closely with shorter exercise duration in the MR scanner and with 6MW distance and lower peak oxygen consumption on cardiopulmonary testing (P < 0.001 for all). SM mitochondrial oxidative capacity was lower in older individuals and correlated with rapid HEP decline but less closely with EI.CONCLUSIONSeveral-fold faster SM energetic decline during exercise occurs in FO individuals and correlates closely with multiple measures of EI. Rapid energetic decline represents an objective, functional measure of SM metabolic changes and a potential new target for mitigating frailty-associated physical limitations.FUNDINGThis work was supported by NIH R21 AG045634, R01 AG063661, R01 HL61912, the Johns Hopkins University Claude D. Pepper Older Americans Independence Center P30AG021334, and the Clarence Doodeman Endowment in Cardiology at Johns Hopkins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605538PMC
http://dx.doi.org/10.1172/jci.insight.141246DOI Listing

Publication Analysis

Top Keywords

energetic decline
12
older individuals
12
exercise intolerance
8
skeletal muscle
8
individuals
8
frail older
8
individuals years
8
hep levels
8
peak oxygen
8
oxygen consumption
8

Similar Publications

DWORF Gene Therapy Improves Cardiac Calcium Handling and Mitochondrial Function.

Circ Res

September 2025

Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, OH. (O.B.-E., Y.K., A.M.G., K.R.H., M.L.K., J.P.V., N.S.B., J.H., J.D.M., C.A.M.).

Background: Calcium (Ca) dysregulation is a hallmark of heart failure, impairing excitation-contraction coupling and contributing to pathological remodeling. The SERCA2a (sarco/endoplasmic reticulum Ca ATPase isoform 2a) mediates Ca reuptake into the sarcoplasmic reticulum (SR) during diastole, but its activity declines in failing hearts. DWORF (dwarf open reading frame), a newly identified cardiac microprotein, enhances SERCA2a activity and improves cardiomyocyte Ca cycling and contractility.

View Article and Find Full Text PDF

Aging is associated with progressive declines in skeletal muscle mass, strength, and endurance, often linked to mitochondrial dysfunction. However, a complete understanding of mitochondrial impairments during aging is lacking. Herein, we examined how biological sex and aging affect muscle function and mitochondrial energy transduction.

View Article and Find Full Text PDF

The ecological impact of crown-of-thorns starfish (CoTS; spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates.

View Article and Find Full Text PDF

APOE genotype influences on the brain metabolome of aging mice - role for mitochondrial energetics in mechanisms of resilience in APOE2 genotype.

Mol Neurodegener

September 2025

Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Department of Medicine, Duke University, Durham, NC, 27708, USA.

Unlabelled: Alzheimer’s disease (AD) risk and progression are significantly influenced by APOE genotype with APOE4 increasing and APOE2 decreasing susceptibility compared to APOE3. While the effect of those genotypes was extensively studied on blood metabolome, less is known about their impact in the brain. Here we investigated the impacts of APOE genotypes and aging on brain metabolic profiles across the lifespan, using human APOE-targeted replacement mice.

View Article and Find Full Text PDF

Diet and nutrition are critical factors influencing energetics and health. Laboratory studies show that organisms adjust to changes in nutrient intake through flexible metabolic responses such as fuel switching. While the physiological effects of nutrient balance in humans have been studied, data from closely related species living in nature are lacking.

View Article and Find Full Text PDF