Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding ecological processes and predicting long-term dynamics are ongoing challenges in ecology. To address these challenges, we suggest an approach combining mathematical analyses and Bayesian hierarchical statistical modeling with diverse data sources. Novel mathematical analysis of ecological dynamics permits a process-based understanding of conditions under which systems approach equilibrium, experience large oscillations, or persist in transient states. This understanding is improved by combining ecological models with empirical observations from a variety of sources. Bayesian hierarchical models explicitly couple process-based models and data, yielding probabilistic quantification of model parameters, system characteristics, and associated uncertainties. We outline relevant tools from dynamical analysis and hierarchical modeling and argue for their integration, demonstrating the value of this synthetic approach through a simple predator-prey example.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tree.2020.08.006 | DOI Listing |