98%
921
2 minutes
20
van der Waals heterostructures of two-dimensional (2D) materials have attracted considerable attention due to their flexibility in the design of new functional devices. Despite numerous studies on graphene/2D semiconductor heterostructures, their optoelectronic applications are significantly hindered because of several disadvantages, such as large band gaps and chemical instability. In this work, we demonstrate the fabrication of graphene/S-doped InSe heterostructure photodetectors with excellent photoresponse performance, and this is attributed to the moderate band gap and band gap engineering by element doping of InSe as well as the high carrier mobility of graphene. In particular, the graphene/InSe0.9S0.1 device achieves an ultrahigh photoresponsivity of ∼4.9 × 106 A W-1 at 700 nm and an EQE of 8.7 × 108%, and it exhibits broadband photodetection (visible to near-infrared). More importantly, by virtue of the interaction between n-type graphene arising from the influence of h-BN as a dielectric layer and S-doped InSe with a high work-function, our devices always exhibited positive photocurrent when the polarity of the gate voltage is adjusted, and is different from that the previously reported graphene/2D semiconductor photodetectors. This work not only provides a promising platform for highly efficient broadband photodetectors but also sheds light on tuning the optoelectronic performance through band gap engineering and designing novel heterostructures-based various 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr04338a | DOI Listing |
Environ Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Jorgensen Hall, 855 North 16th Str., NE 68588-0299, Lincoln, Nebraska, 68588-0007, UNITED STATES.
The band structure of ultrathin Pd(111) thin films grown on the CrO(0001) surface was studied by angular-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. The CrO(0001) interface and the expanded Pd lattice constant appears to significantly affect the occupied band structure of an ultrathin palladium film. A characteristic band splitting is seen in the experimental occupied electronic structure, forming a hexagonal pattern approximately half-way from the Γ" point to the surface Brillouin zone boundary.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Gunma University, 1-5-1 Tenjincho, Kiryu, 376-0052, JAPAN.
We review the fabrication and transport characterization of hexagonal boron nitride (hBN)/Bernal bilayer graphene (BLG) moiré superlattices. Due to the moiré effect, the hBN/BLG moiré superlattices exhibit an energy gap at the charge neutrality point (CNP) even in the absence of a perpendicular electric field. In BLG, the application of a perpendicular electric field tunes the energy gap at the CNP, which contrasts with single-layer graphene and is similar to the family of rhombohedral multilayer graphene.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Princeton University, Department of Physics, Princeton, New Jersey 08544, USA.
We define the absolute Wilson loop winding and prove that it bounds the (integrated) quantum metric from below. This Wilson loop lower bound naturally reproduces the known Chern and Euler bounds of the integrated quantum metric and provides an explicit lower bound of the integrated quantum metric due to the time-reversal protected Z_{2} index, answering a hitherto open question. In general, the Wilson loop lower bound can be applied to any other topological invariants characterized by Wilson loop winding, such as the particle-hole Z_{2} index.
View Article and Find Full Text PDF