Optogenetic TDP-43 nucleation induces persistent insoluble species and progressive motor dysfunction in vivo.

Neurobiol Dis

Physician Scientist Training Program, University of Pittsburgh School of Medicine, United States of America; Center for Neuroscience, University of Pittsburgh, United States of America; Department of Neurobiology, University of Pittsburgh School of Medicine, United States of America; Pittsburgh Inst

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TDP-43 is a predominantly nuclear DNA/RNA binding protein that is often mislocalized into insoluble cytoplasmic inclusions in post-mortem patient tissue in a variety of neurodegenerative disorders including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FTD). The underlying causes of TDP-43 proteinopathies remain unclear, but recent studies indicate the formation of these protein assemblies is driven by aberrant phase transitions of RNA deficient TDP-43. Technical limitations have prevented our ability to understand how TDP-43 proteinopathy relates to disease pathogenesis. Current animal models of TDP-43 proteinopathy often rely on overexpression of wild-type TDP-43 to non-physiological levels that may initiate neurotoxicity through nuclear gain of function mechanisms, or by the expression of disease-causing mutations found in only a fraction of ALS patients. New technologies allowing for light-responsive control of subcellular protein crowding provide a promising approach to drive intracellular protein aggregation, as we have previously demonstrated in vitro. Here we present a model for the optogenetic induction of TDP-43 proteinopathy in Drosophila that recapitulates key features of patient pathology, including detergent insoluble cytoplamsic inclusions and progressive motor dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040199PMC
http://dx.doi.org/10.1016/j.nbd.2020.105078DOI Listing

Publication Analysis

Top Keywords

tdp-43 proteinopathy
12
progressive motor
8
motor dysfunction
8
tdp-43
7
optogenetic tdp-43
4
tdp-43 nucleation
4
nucleation induces
4
induces persistent
4
persistent insoluble
4
insoluble species
4

Similar Publications

Introduction: Frontotemporal dementia (FTD) is a neurodegenerative disease that often causes young-onset dementia and affects patients' behaviour and personality. Although FTD significantly burdens patients' family caregivers, their experiences with follow-up health care services remain poorly understood.

Aim: In our study, we explored how family caregivers of patients with FTD have experienced follow-up health care for FTD, particularly their involvement in, influence over and support received during the pre- and post-diagnostic stages.

View Article and Find Full Text PDF

Introduction: Biomarkers are essential for monitoring the progression of frontotemporal dementia (FTD). Although dysregulated brain lipid metabolism, particularly sphingolipids enriched in the nervous system, is a key feature of neurodegeneration, plasma lipids remain underexplored as biomarkers compared to imaging and serum proteins.

Methods: We examined plasma lipidomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) from individuals carrying pathogenic variants linked to autosomal dominant FTD (GRN, C9orf72, MAPT) and non-carriers.

View Article and Find Full Text PDF

Introduction: Antisocial behaviors occur in dementia, but the underlying neurocognitive mechanisms remain underexplored. We administered a decision-making task measuring patients' harm aversion by offering options to shock themselves or another person in exchange for money, hypothesizing that task performance would relate to antisocial behaviors and ventromedial/orbitofrontal cortex (vmPFC/OFC) atrophy.

Methods: Among 43 dementia patients (n = 23 behavioral variant frontotemporal dementia [bvFTD], n = 20 Alzheimer's disease [AD]), we used linear regressions to measure relationships between harm aversion and antisocial behavior, psychopathic personality traits, socioemotional functions, and vmPFC/OFC cortical thickness, controlling for age, sex, and cognitive dysfunction.

View Article and Find Full Text PDF

Background: Frontotemporal dementia (FTD) encompasses diverse clinical phenotypes, primarily characterized by behavioral and/or language dysfunction. A newly characterized variant, semantic behavioral variant FTD (sbvFTD), exhibits predominant right temporal atrophy with features bridging behavioral variant FTD (bvFTD) and semantic variant primary progressive aphasia (svPPA). This study investigates the longitudinal structural MRI correlates of these FTD variants, focusing on cortical and subcortical structural damage to aid differential diagnosis and prognosis.

View Article and Find Full Text PDF

Network dysfunction precedes neurodegeneration in a dox-regulatable TDP-43 mouse model of ALS-FTD.

J Neurosci

September 2025

Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.

Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).

View Article and Find Full Text PDF