A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Statistical field calibration of a low-cost PM monitoring network in Baltimore. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-cost air pollution monitors are increasingly being deployed to enrich knowledge about ambient air-pollution at high spatial and temporal resolutions. However, unlike regulatory-grade (FEM or FRM) instruments, universal quality standards for low-cost sensors are yet to be established and their data quality varies widely. This mandates thorough evaluation and calibration before any responsible use of such data. This study presents evaluation and field-calibration of the PM data from a network of low-cost monitors currently operating in Baltimore, MD, which has only one regulatory PM monitoring site within city limits. Co-location analysis at this regulatory site in Oldtown, Baltimore revealed high variability and significant overestimation of PM levels by the raw data from these monitors. Universal laboratory corrections reduced the bias in the data, but only partially mitigated the high variability. Eight months of field co-location data at Oldtown were used to develop a gain-offset calibration model, recast as a multiple linear regression. The statistical model offered substantial improvement in prediction quality over the raw or lab-corrected data. The results were robust to the choice of the low-cost monitor used for field-calibration, as well as to different seasonal choices of training period. The raw, lab-corrected and statistically-calibrated data were evaluated for a period of two months following the training period. The statistical model had the highest agreement with the reference data, producing a 24-hour average root-mean-square-error (RMSE) of around 2 . To assess transferability of the calibration equations to other monitors in the network, a cross-site evaluation was conducted at a second co-location site in suburban Essex, MD. The statistically calibrated data once again produced the lowest RMSE. The calibrated PM readings from the monitors in the low-cost network provided insights into the intra-urban spatiotemporal variations of PM in Baltimore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480820PMC
http://dx.doi.org/10.1016/j.atmosenv.2020.117761DOI Listing

Publication Analysis

Top Keywords

data
10
high variability
8
statistical model
8
raw lab-corrected
8
training period
8
low-cost
6
monitors
5
statistical field
4
calibration
4
field calibration
4

Similar Publications