98%
921
2 minutes
20
Background: Phlebotomus pedifer is the vector for Leishmania aethiopica causing cutaneous leishmaniasis (CL) in southwestern Ethiopia. Previous research on the transmission dynamics of CL resulted in recommendations for vector control. In order to target these interventions towards affected areas, a comprehensive understanding of the spatial distribution of P. pedifer at high spatial resolution is required. Therefore, this study determined the environmental predictors that facilitate the distribution of P. pedifer and created a map indicating the areas where conditions are suitable for survival of the vector in southwestern Ethiopia with high spatial resolution.
Methods: Phlebotomus pedifer presence points were collected during two entomological surveys. Climate, vegetation and topographic variables were assembled. Climate variables were interpolated with variables derived from high-resolution digital elevation models to generate topoclimatic layers representing the climate conditions in the highlands. A Maximum Entropy model was run with the presence points, predicting variables and background points, which were selected based on a bias file.
Results: Phlebotomus pedifer was the only captured Phlebotomus species in the study area and was collected at altitudes ranging between 1685 and 2892 m. Model projections indicated areas with suitable conditions in a 'belt' surrounding the high mountain peaks. Model performance was high, with train and test AUC values being 0.93 and 0.90, respectively. A multivariate environmental similarity surface (MESS) analysis showed that the model projection was only slightly extrapolated for some of the variables. The mean annual temperature was the environmental variable, which contributed most to the model predictions (60.0%) followed by the seasonality in rainfall (13.2%). Variables representing steep slopes showed very low importance to model predictions.
Conclusions: Our findings indicate that the suitable habitats for P. pedifer correspond well with the altitudes at which CL was reported previously, but the predictions are more widely distributed, in contrast with the description of CL to occur in particular foci. Moreover, we confirm that vector distribution is driven by climate factors, suggesting inclusion of topoclimate in sand fly distribution models. Overall, our model provides a map with a high spatial resolution that can be used to target sand fly control measures in southwestern Ethiopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488460 | PMC |
http://dx.doi.org/10.1186/s13071-020-04336-3 | DOI Listing |
Trop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFJ Med Entomol
July 2024
Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.
Understanding the distribution patterns of medically significant sandflies is crucial for effective vector and disease control planning. This study focused on investigating the abundance and distribution of phlebotomine sandflies, specifically emphasizing Phlebotomus pedifer (Diptera: Psychodidae), the vector of Leishmania aethiopica responsible for cutaneous leishmaniasis in the highlands of southern Ethiopia. The study employed CDC light traps and sticky paper traps in various habitats, including human houses, farm fields, and rock cliffs, with and without the presence of hyraxes.
View Article and Find Full Text PDFParasit Vectors
November 2020
Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
Background: Ethiopia is affected by human leishmaniasis caused by several Leishmania species and transmitted by a variety of sand fly vectors of the genus Phlebotomus. The sand fly fauna in Ethiopia is highly diverse and some species are closely related and similar in morphology, resulting in difficulties with species identification that requires deployment of molecular techniques. DNA barcoding entails high costs, requires time and lacks reference sequences for many Ethiopian species.
View Article and Find Full Text PDFParasit Vectors
September 2020
Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.
Background: Phlebotomus pedifer is the vector for Leishmania aethiopica causing cutaneous leishmaniasis (CL) in southwestern Ethiopia. Previous research on the transmission dynamics of CL resulted in recommendations for vector control. In order to target these interventions towards affected areas, a comprehensive understanding of the spatial distribution of P.
View Article and Find Full Text PDFPLoS Negl Trop Dis
March 2020
Biology Department, Arba Minch University, Arba Minch, Ethiopia.
Background: Cutaneous leishmaniasis (CL) is a major public health concern in Ethiopia. However, knowledge about the complex zoonotic transmission cycle is limited, hampering implementation of control strategies. We explored the feeding behavior and activity of the vector (Phlebotomus pedifer) and studied the role of livestock in CL transmission in southwestern Ethiopia.
View Article and Find Full Text PDF