A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: There is poor knowledge on characteristics, comorbidities and laboratory measures associated with risk for adverse outcomes and in-hospital mortality in European Countries. We aimed at identifying baseline characteristics predisposing COVID-19 patients to in-hospital death.

Methods And Results: Retrospective observational study on 3894 patients with SARS-CoV-2 infection hospitalized from February 19th to May 23rd, 2020 and recruited in 30 clinical centres distributed throughout Italy. Machine learning (random forest)-based and Cox survival analysis. 61.7% of participants were men (median age 67 years), followed up for a median of 13 days. In-hospital mortality exhibited a geographical gradient, Northern Italian regions featuring more than twofold higher death rates as compared to Central/Southern areas (15.6% vs 6.4%, respectively). Machine learning analysis revealed that the most important features in death classification were impaired renal function, elevated C reactive protein and advanced age. These findings were confirmed by multivariable Cox survival analysis (hazard ratio (HR): 8.2; 95% confidence interval (CI) 4.6-14.7 for age ≥85 vs 18-44 y); HR = 4.7; 2.9-7.7 for estimated glomerular filtration rate levels <15 vs ≥ 90 mL/min/1.73 m; HR = 2.3; 1.5-3.6 for C-reactive protein levels ≥10 vs ≤ 3 mg/L). No relation was found with obesity, tobacco use, cardiovascular disease and related-comorbidities. The associations between these variables and mortality were substantially homogenous across all sub-groups analyses.

Conclusions: Impaired renal function, elevated C-reactive protein and advanced age were major predictors of in-hospital death in a large cohort of unselected patients with COVID-19, admitted to 30 different clinical centres all over Italy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833278PMC
http://dx.doi.org/10.1016/j.numecd.2020.07.031DOI Listing

Publication Analysis

Top Keywords

in-hospital mortality
12
survival analysis
12
3894 patients
8
machine learning
8
cox survival
8
common cardiovascular
4
cardiovascular risk
4
risk factors
4
in-hospital
4
factors in-hospital
4

Similar Publications