A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Coupling Flow, Heat, and Reactive Transport Modeling to Reproduce Redox Potential Evolution: Application to an Infiltration Pond. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Redox potential (Eh) measurements are widely used as indicators of the dominant reduction-oxidation reactions occurring underground. Yet, Eh data are mostly used in qualitative terms, as actual values cannot be used to distinguish uniquely the dominant redox processes at a sampling point and should therefore be combined with a detailed geochemical characterization of water samples. In this work, we have intensively characterized the redox potential of the first meter of soil in an infiltration pond recharged with river water using a set of sensors measuring every 12 min during a 1 year period. This large amount of data combined with hydrogeochemical campaigns allowed developing a reactive transport model capable of reproducing the redox potential in space and time together with the site hydrochemistry. Our results showed that redox processes were mainly driven by the amount of sedimentary organic matter in the system as well as by seasonal variation of temperature. As a subsidiary result, our work emphasizes the need to use a fully coupled model of flow, heat transport, solute transport, and the geochemical reaction network to fully reproduce the Eh observations in the topsoil.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c03056DOI Listing

Publication Analysis

Top Keywords

redox potential
16
flow heat
8
reactive transport
8
infiltration pond
8
redox processes
8
redox
6
coupling flow
4
heat reactive
4
transport
4
transport modeling
4

Similar Publications