98%
921
2 minutes
20
Background People with chronic heart failure (CHF) experience severe skeletal muscle dysfunction, characterized by mitochondrial abnormalities, which exacerbates the primary symptom of exercise intolerance. However, the molecular triggers and characteristics underlying mitochondrial abnormalities caused by CHF remain poorly understood. Methods and Results We recruited 28 patients with CHF caused by reduced ejection fraction and 9 controls. We simultaneously biopsied skeletal muscle from the pectoralis major in the upper limb and from the vastus lateralis in the lower limb. We phenotyped mitochondrial function in permeabilized myofibers from both sites and followed this by complete RNA sequencing to identify novel molecular abnormalities in CHF skeletal muscle. Patients with CHF presented with upper and lower limb skeletal muscle impairments to mitochondrial function that were of a similar deficit and indicative of a myopathy. Mitochondrial abnormalities were strongly correlated to symptoms. Further RNA sequencing revealed a unique transcriptome signature in CHF skeletal muscle characterized by a novel triad of differentially expressed genes related to deficits in energy metabolism including adenosine monophosphate deaminase 3, pyridine nucleotide-disulphide oxidoreductase domain 2, and lactate dehydrogenase C. Conclusions Our data suggest an upper and lower limb metabolic myopathy that is characterized by a unique transcriptome signature in skeletal muscle of humans with CHF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727001 | PMC |
http://dx.doi.org/10.1161/JAHA.120.017091 | DOI Listing |
J Foot Ankle Res
September 2025
Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA.
Introduction: Intrinsic foot muscles and the plantar fascia are crucial for foot health, which diminishes with age and conditions such as chronic plantar fasciitis (PF). Ultrasound (US) is an accessible and cost-effective method for evaluating these structures. This study aims to assess the repeatability, reliability, and validity of plantar fascia thickness and flexor digitorum brevis (FDB) muscle measurements using US compared with MRI in individuals with and without PF.
View Article and Find Full Text PDFFASEB J
September 2025
School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Most animals experience abrupt developmental transitions involving major tissue remodeling, but the links with metabolic changes remain poorly understood. We examined ontogenetic changes in mitochondrial volume, oxidative capacity, oxygen consumption capacity, and anaerobic capacity across four organs (gut, liver, heart, and hindlimb muscle) in Xenopus laevis from metamorphosis to adulthood. These organs differ in the extent of developmental transformation.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
September 2025
Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2025
Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
Background: Body composition alterations such as skeletal muscle (SM) loss in cancer patients are associated with poor survival. In turn, immune cell-driven pathways have been linked to muscle wasting. We aimed to investigate the relationship between body composition, tumour-infiltrating lymphocytes and survival in patients with advanced lung cancer.
View Article and Find Full Text PDFLab Anim Res
September 2025
Department of Pathology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
Background: Stroke-prone spontaneously hypertensive rats (SHRSP) exhibit slow-twitch muscle-specific hypotrophy compared with normotensive Wistar-Kyoto rats (WKY). Because slow-twitch muscles are prone to disuse atrophy, SHRSP may experience both disuse atrophy and impaired recovery from it. This study investigated the response of SHRSP to disuse atrophy and subsequent recovery, using WKY as a control.
View Article and Find Full Text PDF