A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The MADS transcription factors (TF), SEPALLATA3 (SEP3) and AGAMOUS (AG) are required for floral organ identity and floral meristem determinacy. While dimerization is obligatory for DNA binding, SEP3 and SEP3-AG also form tetrameric complexes. How homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding and gene regulation is not known. Using sequential DNA affinity purification sequencing (seq-DAP-seq), we determined genome-wide binding of SEP3 homomeric and SEP3-AG heteromeric complexes, including SEP3Δtet-AG, a complex with a SEP3 splice variant, SEP3Δtet, which is largely dimeric and SEP3-AG tetramer. SEP3 and SEP3-AG share numerous bound regions, however each complex bound unique sites, demonstrating that protein identity plays a role in DNA-binding. SEP3-AG and SEP3Δtet-AG share a similar genome-wide binding pattern; however the tetrameric form could access new sites and demonstrated a global increase in DNA-binding affinity. Tetramerization exhibited significant cooperative binding with preferential distances between two sites, allowing efficient binding to regions that are poorly recognized by dimeric SEP3Δtet-AG. By intersecting seq-DAP-seq with ChIP-seq and expression data, we identified unique target genes bound either in SEP3-AG seq-DAP-seq or in SEP3/AG ChIP-seq. Seq-DAP-seq is a versatile genome-wide technique and complements in vivo methods to identify putative direct regulatory targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515736PMC
http://dx.doi.org/10.1093/nar/gkaa729DOI Listing

Publication Analysis

Top Keywords

genome-wide binding
12
purification sequencing
8
binding sep3
8
sep3 sep3-ag
8
sep3-ag
6
genome-wide
5
sep3
5
binding
5
binding sepallata3
4
sepallata3 agamous
4

Similar Publications