Shaping Li Deposits from Wild Dendrites to Regular Crystals via the Ferroelectric Effect.

Nano Lett

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Manipulating the Li plating behavior remains a challenging task toward Li-based high-energy batteries. Generally, the Li plating process is kinetically controlled by ion transport, concentration gradient, local electric field, etc. A myriad of strategies have been developed for homogenizing the kinetics; however, such kinetics-controlled Li plating nature is barely changed. Herein, a ferroelectric substrate comprised of homogeneously distributed BaTiO was deployed and the Li plating behavior was transferred from a kinetic-controlled to a thermodynamic-preferred mode via ferroelectric effect. Such Li deposits with uniform hexagonal and cubic shapes are highly in accord with the thermodynamic principle where the body-centered cubic Li is apt to expose more (110) facets as possible to maximally minimize its surface energy. The mechanism was later confirmed due to the spontaneous polarization of BTO particles trigged by an applied electric field. The instantly generated reverse polarized field and charged ends not only neutralized the electric field but also leveled the ion distribution at the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c03206DOI Listing

Publication Analysis

Top Keywords

electric field
12
plating behavior
8
shaping deposits
4
deposits wild
4
wild dendrites
4
dendrites regular
4
regular crystals
4
crystals ferroelectric
4
ferroelectric manipulating
4
plating
4

Similar Publications

Designing Spin-Correlated Radical Ion Pairs for Quantum Sensing of Electric Fields: Effect of Electron-Nuclear Hyperfine Coupling.

J Phys Chem A

September 2025

Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.

Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.

View Article and Find Full Text PDF

Electroporation is a promising technology utilizing electrical pulses for macromolecule delivery and soft-tissue ablation, with applications that include next-generation prophylactics and the treatment of genetic diseases such as cancer. This study demonstrates a high-throughput capable 3D tissue culture model for quantification of the reversible and irreversible electroporation thresholds for a given electroporation protocol. By using a non-uniform electric field and analyzing the spatial distribution of transfected cells, both reversible and irreversible thresholds can be identified within a single sample, increasing the efficiency at which electroporation protocols can be characterized, especially for in vivo translation.

View Article and Find Full Text PDF

Cystathionine γ-lyase (CSE) produces hydrogen sulfide (HS), a vasodilator critical for vascular function. While its systemic effects are well-documented, its role in erectile physiology remains unclear. This study investigated the impact of CSE deletion on vascular and erectile tissue reactivity.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF