Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of microfeature-enabled devices, such as microfluidic platforms and anti-fouling surfaces, has grown in both potential and application in recent years. Injection molding is an attractive method of manufacturing these devices due to its excellent process throughput and commodity-priced raw materials. Still, the manufacture of micro-structured tooling remains a slow and expensive endeavor. This work investigated the feasibility of utilizing additive manufacturing, specifically a Digital Light Processing (DLP)-based inverted stereolithography process, to produce thermoset polymer-based tooling for micro injection molding. Inserts were created with an array of 100-μm wide micro-features, having different heights and thus aspect ratios. These inserts were molded with high flow polypropylene to investigate print process resolution capabilities, channel replication abilities, and insert wear and longevity. Samples were characterized using contact profilometry as well as optical and scanning electron microscopies. Overall, the inserts exhibited a maximum lifetime of 78 molding cycles and failed by cracking of the entire insert. Damage was observed for the higher aspect ratio features but not the lower aspect ratio features. The effect of the tool material on mold temperature distribution was modeled to analyze the impact of processing and mold design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570071PMC
http://dx.doi.org/10.3390/mi11090819DOI Listing

Publication Analysis

Top Keywords

injection molding
12
tooling micro
8
micro injection
8
aspect ratio
8
ratio features
8
characterization stereolithography
4
stereolithography printed
4
printed soft
4
soft tooling
4
molding
4

Similar Publications

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF

An Asp f2-like protein negatively affects stress tolerance, conidiation and virulence in Metarhizium acridum.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add

Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.

View Article and Find Full Text PDF

Fabrication of Patterned Composite Microneedles via Inkjet Printing for Enhanced Drug Delivery.

Adv Healthc Mater

September 2025

Department of Smart Health Science and Technology, Kangwon National University (KNU), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.

Microneedle (MN) technology offers a minimally invasive, patient-friendly alternative to conventional hypodermic injections for dermal drug delivery. However, traditional micro-molding techniques are limited by single-material fabrication, involving labor-intensive processes, excessive material waste, and scalability issues, restricting broader therapeutic applications. To address these challenges, an inkjet printing method is implemented to fabricate multi-material MN patches using gelatin and gelatin methacryloyl (GelMA) hydrogels.

View Article and Find Full Text PDF

Natural fiber-reinforced biocomposites have gained the attention of researchers in the fields of household, aerospace, and automobile due to their low density, biodegradability, and recyclability. Regardless of these advantages, biocomposites possess certain limitations, such as moisture absorption, weak fiber-matrix adhesion, and poor flammability. To address this issue, fiber surfaces were modified in the present research investigation with a novel electroless copper coating process.

View Article and Find Full Text PDF

Purpose: To investigate the ability of the smart denture conversion (SDC) technique to produce a stronger interim full-arch implant restoration.

Materials And Methods: Three materials (OnX Tough 3D-printed resin, milled PMMA, and injection molded PMMA) were used to fabricate 180 specimens, 60 specimens per material. Then, an equal number of specimens were assigned a conversion technique: either traditional denture conversion or smart denture conversion.

View Article and Find Full Text PDF