A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A deep analysis using panel-based next-generation sequencing in an Ecuadorian pediatric patient with anaplastic astrocytoma: a case report. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Anaplastic astrocytoma is a rare disorder in children from 10 to 14 years of age, with an estimated 0.38 new cases per 100,000 people per year worldwide. Panel-based next-generation sequencing opens new possibilities for diagnosis and therapy of rare diseases such as this one. Because it has never been genetically studied in the Ecuadorian population, we chose to genetically characterize an Ecuadorian pediatric patient with anaplastic astrocytoma for the first time. Doing so allows us to provide new insights into anaplastic astrocytoma diagnosis and treatment.

Case Presentation: Our patient was a 13-year-old Mestizo girl with an extensive family history of cancer who was diagnosed with anaplastic astrocytoma. According to ClinVar, SIFT, and PolyPhen, the patient harbored 354 genomic alterations in 100 genes. These variants were mostly implicated in deoxyribonucleic acid (DNA) repair. The top five most altered genes were FANCD2, NF1, FANCA, FANCI, and WRN. Even though TP53 presented only five mutations, the rs11540652 single-nucleotide polymorphism classified as pathogenic was found in the patient and her relatives; interestingly, several reports have related it to Li-Fraumeni syndrome. Furthermore, in silico analysis using the Open Targets Platform revealed two clinical trials for pediatric anaplastic astrocytoma (studying cabozantinib, ribociclib, and everolimus) and 118 drugs that target the patient's variants, but the studies were not designed specifically to treat pediatric anaplastic astrocytoma.

Conclusions: Next-generation sequencing allows genomic characterization of rare diseases; for instance, this study unraveled a pathogenic single-nucleotide polymorphism related to Li-Fraumeni syndrome and identified possible new drugs that specifically target the patient's variants. Molecular tools should be implemented in routine clinical practice for early detection and effective preemptive intervention delivery and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457761PMC
http://dx.doi.org/10.1186/s13256-020-02451-4DOI Listing

Publication Analysis

Top Keywords

anaplastic astrocytoma
24
next-generation sequencing
12
panel-based next-generation
8
ecuadorian pediatric
8
pediatric patient
8
patient anaplastic
8
rare diseases
8
single-nucleotide polymorphism
8
li-fraumeni syndrome
8
pediatric anaplastic
8

Similar Publications