98%
921
2 minutes
20
We designed a novel thermoresponsive system of nanolayers composed of star poly[oligo(ethylene glycol) methacrylate]s (S-POEGMA) covalently bonded to a solid support and covered with polyplexes of cationic star polymers and plasmid DNA (pDNA). S-POEGMA stars were attached to the solid support via a UV-mediated "grafting to" method. To the best of our knowledge, for the first time, the conformational changes of obtained star nanolayers, occurring with changes in temperature, were studied using a quartz crystal microbalance technique. Next, the polyplexes of star poly[N,N'-dimethylaminoethyl methacrylate-ran-di(ethylene glycol) methacrylate] (S-P(DMAEMA-DEGMA)) with pDNA, exhibiting a phase transition temperature (T) in culture medium DMEM, were deposited on S-POEGMA layers when the temperature increased above the T of polyplex. The thermoresponsivity of the system was then the main mechanism for controlling the adhesion, proliferation, transfection and detachment of HT-1080 cells. The nanolayers promoted the effective cell culture and delivered nucleic acids into cells, with a transfection efficiency several times higher than that of the control. The detachment of the transfected cells was regulated only by the change of temperature. The studies demonstrated that we obtained a novel and effective system, based on a star polymer architecture, useful for gene delivery and tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119823 | DOI Listing |
Biomaterials
September 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:
The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Science, RMIT University, P.O. Box 2476, Melbourne 3001, Australia.
Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.
View Article and Find Full Text PDFGut Microbes
December 2025
Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.
Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.
View Article and Find Full Text PDF