Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myaa069DOI Listing

Publication Analysis

Top Keywords

immune responses
16
innate immune
12
galliform birds
8
local innate
8
responses
5
cellular molecular
4
molecular insights
4
insights regulation
4
regulation innate
4
immune
4

Similar Publications

Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Nature-inspired IL-1 targeted therapy to treat chronic inflammatory diseases.

Mol Ther

September 2025

Department of Medicine, UMass Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, UMass Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medic

The interleukin (IL)-1 pathway is a key mediator of inflammation and innate immune responses. Its dysregulation contributes to rheumatoid arthritis (RA) and autoinflammatory diseases (AIDs). In this study, we develop a recombinant adeno-associated virus (rAAV)-based gene therapy to deliver an inflammation-inducible, secreted human IL-1 receptor antagonist (sIL-1Ra) as a complementary approach to existing IL-1 blockers.

View Article and Find Full Text PDF