98%
921
2 minutes
20
Using multiple independent simulations instead of one long simulation has been shown to improve the sampling performance attained with the molecular dynamics (MD) simulation method. However, it is generally not known how long each independent simulation should be, how many independent simulations should be used, or to what extent either of these factors affects the overall sampling performance achieved for a given system. The goal of the present study was to assess the sampling performance of multiple independent MD simulations, where each independent simulation begins from a different initial molecular conformation. For this purpose, we used an RNA aptamer that is 25 nucleotides long as a case study. The initial conformations of the aptamer are derived from six predicted 3D structures. Each of the six predicted structures is energy minimized in solution and equilibrated with MD simulations at high temperature. Ten conformations from these six high-temperature equilibration runs are selected as initial conformations for further simulations at ambient temperature. In total, we conducted 60 independent MD simulations, each with a duration of 100 ns, to study the conformation and dynamics of the aptamer. For each group of 10 independent simulations that originated from a particular predicted structure, we evaluated the potential energy distribution of the RNA and used recurrence quantification analysis to examine the sampling of RNA conformational transitions. To assess the impact of starting from different predicted structures, we computed the density of structure projection on principal components to compare the regions sampled by the different groups of ten independent simulations. The recurrence rate and dependence of initial conformation among the groups were also compared. We stress the necessity of using different initial configurations as simulation starting points by showing long simulations from different initial structures suffer from being trapped in different states. Finally, we summarized the sampling efficiency for the complete set of 60 independent simulations and determined regions of under-sampling on the potential energy landscape. The results suggest that conducting multiple independent simulations using a diverse set of predicted structures is a promising approach to achieve sufficient sampling. This approach avoids undesirable outcomes, such as the problem of the RNA aptamer being trapped in a local minimum. For others wishing to conduct multiple independent simulations, the analysis protocol presented in this study is a guide for examining overall sampling and determining if more simulations are necessary for sufficient sampling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439393 | PMC |
http://dx.doi.org/10.1021/acsomega.0c01867 | DOI Listing |
SAR QSAR Environ Res
August 2025
Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China.
Phosphorylation plays an important role in the activity of CDK2 and inhibitor binding, but the corresponding molecular mechanism is still insufficiently known. To address this gap, the current study innovatively integrates molecular dynamics (MD) simulations, deep learning (DL) techniques, and free energy landscape (FEL) analysis to systematically explore the action mechanisms of two inhibitors (SCH and CYC) when CDK2 is in a phosphorylated state and bound state of CyclinE. With the help of MD trajectory-based DL, key functional domains such as the loops L3 loop and L7 are successfully identified.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, Spain.
In this paper, we present the NMR analysis of multivalent compounds displaying chondroitin sulfate E (CS-E) disaccharide ligands and their interaction with langerin. The disaccharides correspond to the two alternative sequences of CS-E: GlcA-GalNAc and GalNAc-GlcA. Firstly, we studied the conformation of the two corresponding series of glycodendrimers free in solution and in the presence of langerin.
View Article and Find Full Text PDFJ Neurosci
September 2025
Institute of Psychology, Leiden University, the Netherlands.
Although phasic alertness generally benefits cognitive performance, it often increases the impact of distracting information, resulting in impaired decision-making and cognitive control. However, it is unclear why phasic alertness has these negative effects. Here, we present a novel, biologically-informed account, according to which phasic alertness generates a transient, evidence-independent input to the decision process.
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.
Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:
Background: Prostate cancer (PRAD) is a common malignancy in men, and exposure to soil pollutants may contribute to its development. And exposure to soil pollutant has been linked to its development, as well as to other diseases including cardiovascular disorders, neurological conditions, and additional cancers.
Methods: This study integrates network toxicology, machine learning, and advanced technologies to investigate the mechanisms through which soil pollutants affect prostate cancer.