A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Classification of probable online social networking addiction: A latent profile analysis from a large-scale survey among Chinese adolescents. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Problematic online social networking use is prevalent among adolescents, but consensus about the instruments and their optimal cut-off points is lacking. This study derived an optimal cut-off point for the validated Online Social Networking Addiction (OSNA) scale to identify probable OSNA cases among Chinese adolescents.

Methods: A survey recruited 4,951 adolescent online social networking users. Latent profile analysis (LPA) and receiver operating characteristic curve (ROC) analyses were applied to the validated 8-item OSNA scale to determine its optimal cut-off point.

Results: The 3-class model was selected by multiple criteria, and validated in a randomly split-half subsample. Accordingly, participants were categorized into the low risk (36.4%), average risk (50.4%), and high risk (13.2%) groups. The highest risk group was regarded as "cases" and the rest as "non-cases", serving as the reference standard in ROC analysis, which identified an optimal cut-off point of 23 (sensitivity: 97.2%, specificity: 95.2%). The cut-off point was used to classify participants into positive (probable case: 17:0%) and negative groups according to their OSNA scores. The positive group (probable cases) reported significantly longer duration and higher intensity of online social networking use, and higher prevalence of Internet addiction than the negative group.

Conclusions: The classification strategy and results are potentially useful for future research that measure problematic online social networking use and its impact on health among adolescents. The approach can facilitate research that requires cut-off points of screening tools but gold standards are unavailable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943659PMC
http://dx.doi.org/10.1556/2006.2020.00047DOI Listing

Publication Analysis

Top Keywords

online social
24
social networking
24
optimal cut-off
16
cut-off point
12
networking addiction
8
latent profile
8
profile analysis
8
problematic online
8
cut-off points
8
osna scale
8

Similar Publications