98%
921
2 minutes
20
Background: Human errors during operations may seriously threaten patient recovery and safety and affect the doctor-patient relationship. Therefore, risk evaluation of the surgical process is critical. Risk evaluation by failure mode and effect analysis (FMEA) is a prospective technology that can identify and evaluate potential failure modes in the surgical process to ensure surgical quality and patient safety. In this study, a hybrid surgical risk-evaluation model was proposed using FMEA and multiobjective optimization on the basis of ratio analysis plus full multiplicative form (MULTIMOORA) method under a single-valued trapezoidal neutrosophic environment. This work aimed to determine the most critical risk points during the surgical process and analyze corresponding solutions.
Methods: A team for FMEA was established from domain experts from different departments in a hospital in Hunan Province. Single-valued trapezoidal neutrosophic numbers (SVTNNs) were used to evaluate potential risk factors in the surgical process. Cmprehensive weights combining subjective and objective weights were determined by the best-worst method and entropy method to differentiate the importance of risk factors. The SVTNN-MULTIMOORA method was utilized to calculate the risk-priority order of failure modes in a surgical process.
Results: The hybrid FMEA model under the SVTNN-MULTIMOORA method was used to calculate the ranking of severity of 21 failure modes in the surgical process. An unclear diagnosis is the most critical failure in the surgical process of a hospital in Hunan Province.
Conclusion: The proposed model can identify and evaluate the most critical potential failure modes of the surgical process effectively. In addition, such a model can help hospitals to reduce surgical risk and improve the safety of surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384878 | PMC |
http://dx.doi.org/10.2147/RMHP.S243331 | DOI Listing |
JMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
Kharkiv Clinical Hospital on Railway Transport No. 1 ≪Health Care Center≫ of Joint-Stock Company «Ukrainian Railways», Kharkiv, Ukraine.
Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.
Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.
Braz Oral Res
September 2025
Universidade de Passo Fundo - UPF, School of Dentistry, Post-Graduation Program in Dentistry, Passo Fundo, RS, Brazil.
This study evaluated the influence of a customized healing abutment (CHA) placed on immediate implants. It also assessed bone ridge volume, keratinized mucosal collar, and postoperative pain. Thirty-one patients needing tooth extraction and immediate implant were selected.
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade Federal do Rio Grande do Norte -UFRN, Department of Dentistry, Natal, RN, Brazil.
This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En
Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.
View Article and Find Full Text PDF